Solving $3p^4-5q^4-4r^2=26$ for $p,q,r$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
SUMMARY

The equation $3p^4 - 5q^4 - 4r^2 = 26$ is solved by identifying the prime numbers $p$, $q$, and $r$. The analysis begins by reducing the equation modulo 5, leading to the conclusion that either $p$ or $r$ must be 5. Setting $p = 5$ results in $3p^4 = 1875$, transforming the equation to $5q^4 + 4r^2 = 1849$. The only prime $q$ satisfying this condition is $q = 3$, which yields $r = 19$. Thus, the solution is $p = 5$, $q = 3$, and $r = 19.

PREREQUISITES
  • Understanding of modular arithmetic, specifically modulo 5.
  • Knowledge of prime numbers and their properties.
  • Familiarity with polynomial equations and their manipulation.
  • Basic algebraic skills for solving equations.
NEXT STEPS
  • Explore advanced techniques in modular arithmetic.
  • Study the properties of prime numbers in number theory.
  • Learn about polynomial equations and their roots.
  • Investigate other methods for solving Diophantine equations.
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in solving polynomial equations involving prime numbers.

Albert1
Messages
1,221
Reaction score
0
$p,q,r$ are all primes , and $3p^4-5q^4-4r^2=26$, find $p,q,r$
 
Mathematics news on Phys.org
Albert said:
$p,q,r$ are all primes , and $3p^4-5q^4-4r^2=26$, find $p,q,r$
[sp]Start by reducing mod 5. A square that is not a multiple of $5$ is congruent to $\pm1\pmod5$, and a fourth power is then congruent to $1\pmod5$. So if neither $p$ nor $r$ is $5$, the equation becomes $3 \pm4 = 1\pmod5$, which is impossible. Therefore either $p$ or $r$ must be $5$. If $r=5$ then the equation becomes $3=1\pmod5$, which is still impossible. Therefore $p=5$, so $3p^4= 1875$ and the equation becomes $5q^4 + 4r^2 = 1875 - 26 = 1849.$

For that to be true, $q$ must clearly be odd, so $q\ne2$. The only other prime satisfying $5q^4<1849$ is $q=3$, with $5q^4 = 405$. That leaves us with $4r^2 = 1849-405 = 1444$. So $r^2 = 361$ and thus $r=19.$[/sp]
 
Opalg said:
[sp]Start by reducing mod 5. A square that is not a multiple of $5$ is congruent to $\pm1\pmod5$, and a fourth power is then congruent to $1\pmod5$. So if neither $p$ nor $r$ is $5$, the equation becomes $3 \pm4 = 1\pmod5$, which is impossible. Therefore either $p$ or $r$ must be $5$. If $r=5$ then the equation becomes $3=1\pmod5$, which is still impossible. Therefore $p=5$, so $3p^4= 1875$ and the equation becomes $5q^4 + 4r^2 = 1875 - 26 = 1849.$

For that to be true, $q$ must clearly be odd, so $q\ne2$. The only other prime satisfying $5q^4<1849$ is $q=3$, with $5q^4 = 405$. That leaves us with $4r^2 = 1849-405 = 1444$. So $r^2 = 361$ and thus $r=19.$[/sp]
nice job !
 
Opalg said:
[sp]Start by reducing mod 5. A square that is not a multiple of $5$ is congruent to $\pm1\pmod5$, and a fourth power is then congruent to $1\pmod5$. So if neither $p$ nor $r$ is $5$, the equation becomes $3 \pm4 = 1\pmod5$, which is impossible. Therefore either $p$ or $r$ must be $5$. If $r=5$ then the equation becomes $3=1\pmod5$, which is still impossible. Therefore $p=5$, so $3p^4= 1875$ and the equation becomes $5q^4 + 4r^2 = 1875 - 26 = 1849.$

For that to be true, $q$ must clearly be odd, so $q\ne2$. The only other prime satisfying $5q^4<1849$ is $q=3$, with $5q^4 = 405$. That leaves us with $4r^2 = 1849-405 = 1444$. So $r^2 = 361$ and thus $r=19.$[/sp]
my solution:
as Opalg's mention $p=5$
for $3p^4-5q^4-4r^2=26$
we have:$3p^4-5q^4=4r^2+26>0---(1)$
from (1) we have :$p>q $ and $p,q $ both are odd
$\therefore q=3$
and $\sqrt {3\times5^4-5\times 3^4-26}=\sqrt {1444}=\sqrt {4r^2}=2\times r=38 $
so $r=19$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K