MHB  Solving $3p^4-5q^4-4r^2=26$ for $p,q,r$

  • Thread starter Thread starter Albert1
  • Start date Start date
AI Thread Summary
The equation $3p^4 - 5q^4 - 4r^2 = 26$ is analyzed under the condition that $p$, $q$, and $r$ are all prime numbers. Reducing the equation modulo 5 reveals that either $p$ or $r$ must equal 5. Setting $p = 5$ leads to the simplification of the equation to $5q^4 + 4r^2 = 1849$. The only viable solution found is $q = 3$ and $r = 19$, satisfying the original equation. Thus, the primes are $p = 5$, $q = 3$, and $r = 19$.
Albert1
Messages
1,221
Reaction score
0
$p,q,r$ are all primes , and $3p^4-5q^4-4r^2=26$, find $p,q,r$
 
Mathematics news on Phys.org
Albert said:
$p,q,r$ are all primes , and $3p^4-5q^4-4r^2=26$, find $p,q,r$
[sp]Start by reducing mod 5. A square that is not a multiple of $5$ is congruent to $\pm1\pmod5$, and a fourth power is then congruent to $1\pmod5$. So if neither $p$ nor $r$ is $5$, the equation becomes $3 \pm4 = 1\pmod5$, which is impossible. Therefore either $p$ or $r$ must be $5$. If $r=5$ then the equation becomes $3=1\pmod5$, which is still impossible. Therefore $p=5$, so $3p^4= 1875$ and the equation becomes $5q^4 + 4r^2 = 1875 - 26 = 1849.$

For that to be true, $q$ must clearly be odd, so $q\ne2$. The only other prime satisfying $5q^4<1849$ is $q=3$, with $5q^4 = 405$. That leaves us with $4r^2 = 1849-405 = 1444$. So $r^2 = 361$ and thus $r=19.$[/sp]
 
Opalg said:
[sp]Start by reducing mod 5. A square that is not a multiple of $5$ is congruent to $\pm1\pmod5$, and a fourth power is then congruent to $1\pmod5$. So if neither $p$ nor $r$ is $5$, the equation becomes $3 \pm4 = 1\pmod5$, which is impossible. Therefore either $p$ or $r$ must be $5$. If $r=5$ then the equation becomes $3=1\pmod5$, which is still impossible. Therefore $p=5$, so $3p^4= 1875$ and the equation becomes $5q^4 + 4r^2 = 1875 - 26 = 1849.$

For that to be true, $q$ must clearly be odd, so $q\ne2$. The only other prime satisfying $5q^4<1849$ is $q=3$, with $5q^4 = 405$. That leaves us with $4r^2 = 1849-405 = 1444$. So $r^2 = 361$ and thus $r=19.$[/sp]
nice job !
 
Opalg said:
[sp]Start by reducing mod 5. A square that is not a multiple of $5$ is congruent to $\pm1\pmod5$, and a fourth power is then congruent to $1\pmod5$. So if neither $p$ nor $r$ is $5$, the equation becomes $3 \pm4 = 1\pmod5$, which is impossible. Therefore either $p$ or $r$ must be $5$. If $r=5$ then the equation becomes $3=1\pmod5$, which is still impossible. Therefore $p=5$, so $3p^4= 1875$ and the equation becomes $5q^4 + 4r^2 = 1875 - 26 = 1849.$

For that to be true, $q$ must clearly be odd, so $q\ne2$. The only other prime satisfying $5q^4<1849$ is $q=3$, with $5q^4 = 405$. That leaves us with $4r^2 = 1849-405 = 1444$. So $r^2 = 361$ and thus $r=19.$[/sp]
my solution:
as Opalg's mention $p=5$
for $3p^4-5q^4-4r^2=26$
we have:$3p^4-5q^4=4r^2+26>0---(1)$
from (1) we have :$p>q $ and $p,q $ both are odd
$\therefore q=3$
and $\sqrt {3\times5^4-5\times 3^4-26}=\sqrt {1444}=\sqrt {4r^2}=2\times r=38 $
so $r=19$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top