MHB  Solving $3p^4-5q^4-4r^2=26$ for $p,q,r$

  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
The equation $3p^4 - 5q^4 - 4r^2 = 26$ is analyzed under the condition that $p$, $q$, and $r$ are all prime numbers. Reducing the equation modulo 5 reveals that either $p$ or $r$ must equal 5. Setting $p = 5$ leads to the simplification of the equation to $5q^4 + 4r^2 = 1849$. The only viable solution found is $q = 3$ and $r = 19$, satisfying the original equation. Thus, the primes are $p = 5$, $q = 3$, and $r = 19$.
Albert1
Messages
1,221
Reaction score
0
$p,q,r$ are all primes , and $3p^4-5q^4-4r^2=26$, find $p,q,r$
 
Mathematics news on Phys.org
Albert said:
$p,q,r$ are all primes , and $3p^4-5q^4-4r^2=26$, find $p,q,r$
[sp]Start by reducing mod 5. A square that is not a multiple of $5$ is congruent to $\pm1\pmod5$, and a fourth power is then congruent to $1\pmod5$. So if neither $p$ nor $r$ is $5$, the equation becomes $3 \pm4 = 1\pmod5$, which is impossible. Therefore either $p$ or $r$ must be $5$. If $r=5$ then the equation becomes $3=1\pmod5$, which is still impossible. Therefore $p=5$, so $3p^4= 1875$ and the equation becomes $5q^4 + 4r^2 = 1875 - 26 = 1849.$

For that to be true, $q$ must clearly be odd, so $q\ne2$. The only other prime satisfying $5q^4<1849$ is $q=3$, with $5q^4 = 405$. That leaves us with $4r^2 = 1849-405 = 1444$. So $r^2 = 361$ and thus $r=19.$[/sp]
 
Opalg said:
[sp]Start by reducing mod 5. A square that is not a multiple of $5$ is congruent to $\pm1\pmod5$, and a fourth power is then congruent to $1\pmod5$. So if neither $p$ nor $r$ is $5$, the equation becomes $3 \pm4 = 1\pmod5$, which is impossible. Therefore either $p$ or $r$ must be $5$. If $r=5$ then the equation becomes $3=1\pmod5$, which is still impossible. Therefore $p=5$, so $3p^4= 1875$ and the equation becomes $5q^4 + 4r^2 = 1875 - 26 = 1849.$

For that to be true, $q$ must clearly be odd, so $q\ne2$. The only other prime satisfying $5q^4<1849$ is $q=3$, with $5q^4 = 405$. That leaves us with $4r^2 = 1849-405 = 1444$. So $r^2 = 361$ and thus $r=19.$[/sp]
nice job !
 
Opalg said:
[sp]Start by reducing mod 5. A square that is not a multiple of $5$ is congruent to $\pm1\pmod5$, and a fourth power is then congruent to $1\pmod5$. So if neither $p$ nor $r$ is $5$, the equation becomes $3 \pm4 = 1\pmod5$, which is impossible. Therefore either $p$ or $r$ must be $5$. If $r=5$ then the equation becomes $3=1\pmod5$, which is still impossible. Therefore $p=5$, so $3p^4= 1875$ and the equation becomes $5q^4 + 4r^2 = 1875 - 26 = 1849.$

For that to be true, $q$ must clearly be odd, so $q\ne2$. The only other prime satisfying $5q^4<1849$ is $q=3$, with $5q^4 = 405$. That leaves us with $4r^2 = 1849-405 = 1444$. So $r^2 = 361$ and thus $r=19.$[/sp]
my solution:
as Opalg's mention $p=5$
for $3p^4-5q^4-4r^2=26$
we have:$3p^4-5q^4=4r^2+26>0---(1)$
from (1) we have :$p>q $ and $p,q $ both are odd
$\therefore q=3$
and $\sqrt {3\times5^4-5\times 3^4-26}=\sqrt {1444}=\sqrt {4r^2}=2\times r=38 $
so $r=19$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K