Solving a Laplace Transform Problem: Where Am I Going Wrong?

metdave
Messages
5
Reaction score
0
I'm out of college and am brushing up on Laplace Transforms. I have a problem I've solved, but I believe the solution I got is wrong and can't find my error.

The problem is 2x''-x'=t*sin(t) x(0)=5,x'(0)=3

My solution...

Take the Laplace Transform

2(s^2x-5s-3)-(sx-5)=2s/(s^2+1)^2

Rearranging, I get
x(2s^2-s)-10s-1=2s/(s^2+1)^2

Solve for x
x=(10s+1)/(2s^2-s)+2/((2s-1)(s^2+1)^2

Then, doing a PFD on the first term, I get -1/s+8/(2s-1)

Doing an inverse Laplace Transform, I get x(t)=-1+8e^(t/2)+Integral((sin(y)-ycos(y)(e^(1/2)((t-y))dy,0,y)

I used the convolution theorem on the second term on the RHS. That doesn't look right because the initial conditions aren't satisfied. Can anyone point me in the right direction?

Thanks!
 
Physics news on Phys.org
To get inverse laplace of 1/(2s-1) I would rewrite as (1/2)/(s-1/2) which becomes (1/2)e^(1/2t). It appears you did not include the 1/2 factor for two of you terms.
 
Two things jump out
1)in 8/(2s-1) the 8 should be 332/25
2)The convolution should involve trigonometric functions not exponents
This rule is also useful here
$$\mathcal{L}^{-1} \{ \mathrm{F}(s) \} = t \, \mathcal{L}^{-1} \left\{ \int_s^\infty \! \mathrm{F}(u) \, \mathrm{d}u \right\}$$
 
Thanks for the help!
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...

Similar threads

Replies
17
Views
3K
Replies
1
Views
3K
Replies
2
Views
2K
Replies
5
Views
3K
Replies
3
Views
3K
Back
Top