ultima9999
- 43
- 0
Hey, I'm stuck on this problem and just wanted some help if possible.
Prove, using an \epsilon - \delta argument, that \lim_{\substack{x\rightarrow -2}} \frac {1 - x - 2x^2} {x + 1} = 5
Ok, so I've answered so far with:
\lim_{\substack{x\rightarrow -2}} \frac {1 - x - 2x^2} {x + 1} = 5 if \forall \epsilon > 0, \exists \delta > 0 : 0 < |x + 2| < \delta \Rightarrow |-2x - 4| < \epsilon
Investigation to find \delta
|-2x - 4| < \epsilon
\Rightarrow -2|x + 2| < \epsilon
\Rightarrow |x + 2| > -\frac {\epsilon} {2}
Therefore, choose \delta = -\frac {\epsilon} {2}
My problem is here, my statement was that |x + 2| < \delta, but my answer so far has given me |x + 2| > \delta. Also, \delta is < 0.
What should I change?
Prove, using an \epsilon - \delta argument, that \lim_{\substack{x\rightarrow -2}} \frac {1 - x - 2x^2} {x + 1} = 5
Ok, so I've answered so far with:
\lim_{\substack{x\rightarrow -2}} \frac {1 - x - 2x^2} {x + 1} = 5 if \forall \epsilon > 0, \exists \delta > 0 : 0 < |x + 2| < \delta \Rightarrow |-2x - 4| < \epsilon
Investigation to find \delta
|-2x - 4| < \epsilon
\Rightarrow -2|x + 2| < \epsilon
\Rightarrow |x + 2| > -\frac {\epsilon} {2}
Therefore, choose \delta = -\frac {\epsilon} {2}
My problem is here, my statement was that |x + 2| < \delta, but my answer so far has given me |x + 2| > \delta. Also, \delta is < 0.
What should I change?
Last edited: