Solving Acceleration Problem for Velocity and Distance

  • Thread starter Thread starter sapiental
  • Start date Start date
  • Tags Tags
    Acceleration
sapiental
Messages
110
Reaction score
0
A particle moves with acceleration a(t) = cos(t)+3

Intital velocity v(0)= 5
initial position s(0) =3

a) fin velocity of particle at time t

v(t) = sin(t)+3t+C
plugging 0 for t I get C = 5

s(t) = -cos(t) + 3/2t^2 + 5t + C
plugging 0 for s I get C = 3

answer: v(t) = sin(t)+3t+5

b) What is the total distance traveled from t = pi to t = 2pi

integral pi to 2pi = v(t) = sin(t)+3t+5
= s(2pi)-s(pi)


Thanks!
 
Physics news on Phys.org
I think the "C" in the x(t) is 4 and not 3.

\cos 0=1

Daniel.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top