Ylle
- 77
- 0
Homework Statement
Hi...
I'm having something about the Interaction/Dirac picture.
The equation of motion, for an observable A that doesn't depend on time in the Schrödinger picture, is given by:
\[i\hbar \frac{d{{A}_{I}}}{dt}=\left[ {{A}_{I}},{{H}_{0}} \right]\]
where:
\[{{\hat{H}}_{0}}=\hbar \omega {{\hat{a}}^{\dagger }}\hat{a}+\frac{\hbar {{\omega }_{0}}{{{\hat{\sigma }}}_{z}}}{2}\]
From this I have to commutate with \[{{\hat{\sigma }}_{+}}\], \[{{\hat{\sigma }}_{-}}\] and \[{{\hat{\sigma }}_{z}}\], where \[{{\hat{\sigma }}_{z}}\] is the last of the Pauli matrices, and \[{{\hat{\sigma }}_{\pm }}=\frac{\left( {{{\hat{\sigma }}}_{x}}\pm i{{{\hat{\sigma }}}_{y}} \right)}{2}\].
Homework Equations
?
The Attempt at a Solution
Is it just as always ? By inserting, and then just take the normal commutator, and get:
<br /> \begin{align}<br /> & \left[ {{\sigma }_{z}},{{H}_{0}} \right]=...=0 \\ <br /> & \left[ {{\sigma }_{+}},{{H}_{0}} \right]=...=-\hbar {{\omega }_{0}}\left[ \begin{matrix}<br /> 0 & 1 \\<br /> 0 & 0 \\<br /> \end{matrix} \right] \\ <br /> & \left[ {{\sigma }_{-}},{{H}_{0}} \right]=...=\hbar {{\omega }_{0}}\left[ \begin{matrix}<br /> 0 & 0 \\<br /> 1 & 0 \\<br /> \end{matrix} \right] \\ <br /> \end{align}<br />
Or am I way off ?
I'm kinda stuck, so a hint would be helpfull :)
Thanks in advance.
Regards