Solving Cubic Equation: x^3 - kx + (k + 11) = 0

  • Context: MHB 
  • Thread starter Thread starter Taran1
  • Start date Start date
  • Tags Tags
    Cubic
Click For Summary
SUMMARY

The discussion centers on solving the cubic equation x^3 - kx + (k + 11) = 0 to find integer values of k that yield at least one positive integer solution for x. The confirmed solutions for k are 19, 25, 34, 59, and 184, derived from the condition that n-1 must be a factor of 12. Graphical analysis using GeoGebra supports the conclusion that k must be greater than 17 or less than -11. The algebraic method provided offers a systematic approach to determining valid k values based on integer factors.

PREREQUISITES
  • Understanding of cubic equations and their properties
  • Familiarity with integer factorization
  • Proficiency in algebraic manipulation and solving equations
  • Experience using GeoGebra for graphical analysis
NEXT STEPS
  • Study the properties of cubic equations in detail
  • Learn about integer factorization techniques
  • Explore advanced algebraic methods for solving polynomial equations
  • Practice using GeoGebra for visualizing mathematical problems
USEFUL FOR

Students in advanced mathematics, educators teaching algebra and polynomial equations, and anyone interested in solving cubic equations and understanding their integer solutions.

Taran1
Messages
2
Reaction score
0
Hi, this question was in a year 11 extension maths textbook in the enrichment section. I have the answer as k>17 and k<-11 because I graphed it on GeoGebra. The Graph can be found here: https://ggbm.at/xpegwwtq. While I know the answers I would like to know how to work it out using algebra.

Here is the Question:
Consider the cubic equation x^3 - kx + (k + 11) = 0, find all the integer values of k for which the equation has at least one positive integer solution for x

Thanks, Taran
 
Mathematics news on Phys.org
Taran said:
Hi, this question was in a year 11 extension maths textbook in the enrichment section. I have the answer as k>17 and k<-11 because I graphed it on GeoGebra. The Graph can be found here: https://ggbm.at/xpegwwtq. While I know the answers I would like to know how to work it out using algebra.

Here is the Question:
Consider the cubic equation x^3 - kx + (k + 11) = 0, find all the integer values of k for which the equation has at least one positive integer solution for x

Thanks, Taran
Hi Taran, and welcome to MHB.

If $x=n$ is a positive integer solution of the equation, then $n^3 - kn + k + 11 = 0$, so that $$k = \frac{n^3+11}{n-1} = \frac{(n-1)(n^2+n+1) + 12}{n-1} = n^2+n+1 + \frac{12}{n-1}.$$ For that to be an integer, $n-1$ must be a factor of $12$. You can then tabulate the possible values of $n$ and $k = \frac{n^3+11}{n-1}$, as follows: $$ \begin{array}{c|cccccc} n-1&1&2&3&4&6&12 \\ n&2&3&4&5&7&13 \\ k&19&19&25&34&59&184 \end{array}.$$ So the only possible values for $k$ are $19,\ 25,\ 34,\ 59,\ 184$ (which all agree with your condition that $k>17$).
 
Last edited:
Opalg said:
Hi Taran, and welcome to MHB.

If $x=n$ is a positive integer solution of the equation, then $n^3 - kn + k + 11 = 0$, so that $$k = \frac{n^3+11}{n-1} = \frac{(n-1)(n^2+n+1) + 12}{n-1} = n^2+n+1 + \frac{12}{n-1}.$$ For that to be an integer, $n-1$ must be a factor of $12$. You can then tabulate the possible values of $n$ and $k = \frac{n^3+11}{n-1}$, as follows: $$ \begin{array}{c|cccccc} n-1&1&2&3&4&6&12 \\ n&2&3&4&5&7&13 \\ k&19&19&25&34&59&184 \end{array}.$$ So the only possible values for $k$ are $19,\ 25,\ 34,\ 59,\ 184$ (which all agree with your condition that $k>17$).

Hello, Chris! (Wave)

This question was posted on another site, and I found your reply so insightful, I took the liberty of posting it there, for the benefit of several there trying to solve it. :)
 
Hi, Thank you so much! This question had my class stumped. That answer makes so much sense. It's been bugging me for a while and I'm very thankful for your help.

Thanks again, Taran
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
892
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
4
Views
2K