MHB Solving Cubic Equation: x^3 - kx + (k + 11) = 0

  • Thread starter Thread starter Taran1
  • Start date Start date
  • Tags Tags
    Cubic
Taran1
Messages
2
Reaction score
0
Hi, this question was in a year 11 extension maths textbook in the enrichment section. I have the answer as k>17 and k<-11 because I graphed it on GeoGebra. The Graph can be found here: https://ggbm.at/xpegwwtq. While I know the answers I would like to know how to work it out using algebra.

Here is the Question:
Consider the cubic equation x^3 - kx + (k + 11) = 0, find all the integer values of k for which the equation has at least one positive integer solution for x

Thanks, Taran
 
Mathematics news on Phys.org
Taran said:
Hi, this question was in a year 11 extension maths textbook in the enrichment section. I have the answer as k>17 and k<-11 because I graphed it on GeoGebra. The Graph can be found here: https://ggbm.at/xpegwwtq. While I know the answers I would like to know how to work it out using algebra.

Here is the Question:
Consider the cubic equation x^3 - kx + (k + 11) = 0, find all the integer values of k for which the equation has at least one positive integer solution for x

Thanks, Taran
Hi Taran, and welcome to MHB.

If $x=n$ is a positive integer solution of the equation, then $n^3 - kn + k + 11 = 0$, so that $$k = \frac{n^3+11}{n-1} = \frac{(n-1)(n^2+n+1) + 12}{n-1} = n^2+n+1 + \frac{12}{n-1}.$$ For that to be an integer, $n-1$ must be a factor of $12$. You can then tabulate the possible values of $n$ and $k = \frac{n^3+11}{n-1}$, as follows: $$ \begin{array}{c|cccccc} n-1&1&2&3&4&6&12 \\ n&2&3&4&5&7&13 \\ k&19&19&25&34&59&184 \end{array}.$$ So the only possible values for $k$ are $19,\ 25,\ 34,\ 59,\ 184$ (which all agree with your condition that $k>17$).
 
Last edited:
Opalg said:
Hi Taran, and welcome to MHB.

If $x=n$ is a positive integer solution of the equation, then $n^3 - kn + k + 11 = 0$, so that $$k = \frac{n^3+11}{n-1} = \frac{(n-1)(n^2+n+1) + 12}{n-1} = n^2+n+1 + \frac{12}{n-1}.$$ For that to be an integer, $n-1$ must be a factor of $12$. You can then tabulate the possible values of $n$ and $k = \frac{n^3+11}{n-1}$, as follows: $$ \begin{array}{c|cccccc} n-1&1&2&3&4&6&12 \\ n&2&3&4&5&7&13 \\ k&19&19&25&34&59&184 \end{array}.$$ So the only possible values for $k$ are $19,\ 25,\ 34,\ 59,\ 184$ (which all agree with your condition that $k>17$).

Hello, Chris! (Wave)

This question was posted on another site, and I found your reply so insightful, I took the liberty of posting it there, for the benefit of several there trying to solve it. :)
 
Hi, Thank you so much! This question had my class stumped. That answer makes so much sense. It's been bugging me for a while and I'm very thankful for your help.

Thanks again, Taran
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top