MHB Solving Cubic Equation: x^3 - kx + (k + 11) = 0

  • Thread starter Thread starter Taran1
  • Start date Start date
  • Tags Tags
    Cubic
AI Thread Summary
The cubic equation x^3 - kx + (k + 11) = 0 has integer solutions for k when k > 17 or k < -11. To determine the integer values of k that yield at least one positive integer solution for x, it is established that k can be expressed as k = (n^3 + 11) / (n - 1), where n is a positive integer. For k to be an integer, n - 1 must be a factor of 12, leading to possible values of k being 19, 25, 34, 59, and 184. This analysis confirms the initial findings and provides a clear algebraic method to derive the solutions. The discussion highlights the importance of understanding the relationship between the factors of the equation and the integer solutions for k.
Taran1
Messages
2
Reaction score
0
Hi, this question was in a year 11 extension maths textbook in the enrichment section. I have the answer as k>17 and k<-11 because I graphed it on GeoGebra. The Graph can be found here: https://ggbm.at/xpegwwtq. While I know the answers I would like to know how to work it out using algebra.

Here is the Question:
Consider the cubic equation x^3 - kx + (k + 11) = 0, find all the integer values of k for which the equation has at least one positive integer solution for x

Thanks, Taran
 
Mathematics news on Phys.org
Taran said:
Hi, this question was in a year 11 extension maths textbook in the enrichment section. I have the answer as k>17 and k<-11 because I graphed it on GeoGebra. The Graph can be found here: https://ggbm.at/xpegwwtq. While I know the answers I would like to know how to work it out using algebra.

Here is the Question:
Consider the cubic equation x^3 - kx + (k + 11) = 0, find all the integer values of k for which the equation has at least one positive integer solution for x

Thanks, Taran
Hi Taran, and welcome to MHB.

If $x=n$ is a positive integer solution of the equation, then $n^3 - kn + k + 11 = 0$, so that $$k = \frac{n^3+11}{n-1} = \frac{(n-1)(n^2+n+1) + 12}{n-1} = n^2+n+1 + \frac{12}{n-1}.$$ For that to be an integer, $n-1$ must be a factor of $12$. You can then tabulate the possible values of $n$ and $k = \frac{n^3+11}{n-1}$, as follows: $$ \begin{array}{c|cccccc} n-1&1&2&3&4&6&12 \\ n&2&3&4&5&7&13 \\ k&19&19&25&34&59&184 \end{array}.$$ So the only possible values for $k$ are $19,\ 25,\ 34,\ 59,\ 184$ (which all agree with your condition that $k>17$).
 
Last edited:
Opalg said:
Hi Taran, and welcome to MHB.

If $x=n$ is a positive integer solution of the equation, then $n^3 - kn + k + 11 = 0$, so that $$k = \frac{n^3+11}{n-1} = \frac{(n-1)(n^2+n+1) + 12}{n-1} = n^2+n+1 + \frac{12}{n-1}.$$ For that to be an integer, $n-1$ must be a factor of $12$. You can then tabulate the possible values of $n$ and $k = \frac{n^3+11}{n-1}$, as follows: $$ \begin{array}{c|cccccc} n-1&1&2&3&4&6&12 \\ n&2&3&4&5&7&13 \\ k&19&19&25&34&59&184 \end{array}.$$ So the only possible values for $k$ are $19,\ 25,\ 34,\ 59,\ 184$ (which all agree with your condition that $k>17$).

Hello, Chris! (Wave)

This question was posted on another site, and I found your reply so insightful, I took the liberty of posting it there, for the benefit of several there trying to solve it. :)
 
Hi, Thank you so much! This question had my class stumped. That answer makes so much sense. It's been bugging me for a while and I'm very thankful for your help.

Thanks again, Taran
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top