Solving Equation for c: Analytical or Numerical Method? | Possible Integer A

  • Thread starter Thread starter i13m
  • Start date Start date
AI Thread Summary
The discussion centers on the feasibility of solving a complex polynomial equation for the variable c, given that A is an integer. Participants suggest that if the equation simplifies to a polynomial with rational coefficients, the rational roots test could be applied. Alternatively, approximation methods like bisection or Newton's method are recommended for finding numerical solutions. The equation's complexity makes analytical solutions challenging, especially without specific values for A. Overall, the consensus leans towards numerical methods as a practical approach for solving the equation.
i13m
Messages
2
Reaction score
0
Hi, all

Homework Statement


After I differentiate a mathematical model, I got the following equation.

I wonder whether or not it is possible to solve c with the following equation

0=c^3\,\left(\ifrac{3\,\left(A^2+c\,A\right)^{\frac{4}{3}}}{c^{\frac{8}{3}}}-\ifrac{24\,\left(A^2+c\,A\right)^{\frac{2}{3}}}{c^{\frac{4}{3}}}+20\right)+c\,\left(-\ifrac{12\,A^2\,\left(A^2+c\,A\right)^{\frac{2}{3}}}{c^{\frac{4}{3}}}-\ifrac{4\,A^2\,\left(A^2+c\,A\right)^{\frac{1}{3}}}{c^{\frac{2}{3}}}\right)+c^5\,\left(\ifrac{72\,\left(A^2+c\,A\right)^{\frac{2}{3}}}{c^{\frac{4}{3}}}-44\right)+c^2\,\left(9\,A-\ifrac{2\,A\,\left(A^2+c\,A\right)^{\frac{1}{3}}}{c^{\frac{2}{3}}}\right)+7\,A^3-40\,c^4\,A

where A will be a possible integer

Can it be done analytically, or the numerical method is a possible solution.

Homework Equations





The Attempt at a Solution



Thanks
 
Physics news on Phys.org
Unless stuff magically cancels out when you expand everything, no. However, there's two ways of going about it:

1) If you're left with a polynomial in c with rational coefficients after expanding everything, you could try the rational roots test to find the roots.

2) You could always try an approximation technique: bisection, Newton, Newton–Raphson

Of course both of these options assume that you know what A is. If you don't, I don't know how you would solve for the roots.
 
You don't need to know the value of A, other than it's a constant. It's similar to being able to solve for the roots of a general quadratic, without knowing their coefficients. The result will be in terms of its coefficients.
 
We can't even see it; after each large bracket start another line if you want anyone to look at it please.
 
Thanks for all replies.

I hope the equation can now be broke into two lines.

<br /> 0=c^3\,\left(\ifrac{3\,\left(A^2+c\,A\right)^{\fra c{4}{3}}}{c^{\frac{8}{3}}}-\ifrac{24\,\left(A^2+c\,A\right)^{\frac{2}{3}}}{c^ {\frac{4}{3}}}+20\right)+c\,\left(-\ifrac{12\,A^2\,\left(A^2+c\,A\right)^{\frac{2}{3} }}{c^{\frac{4}{3}}}-\ifrac{4\,A^2\,\left(A^2+c\,A\right)^{\frac{1}{3}} }{c^{\frac{2}{3}}}\right)+\newline c^5\,\left(\ifrac{72\,\l eft(A^2+c\,A\right)^{\frac{2}{3}}}{c^{\frac{4}{3}} }-44\right)+c^2\,\left(9\,A-\ifrac{2\,A\,\left(A^2+c\,A\right)^{\frac{1}{3}}}{ c^{\frac{2}{3}}}\right)+7\,A^3-40\,c^4\,A<br />

I have tried and failed at expending this whole equation.

I will have a look at some approximation techniques.

Regards
 
Here's the equation:

<br /> <br /> 0=c^3\,\left(\ifrac{3\,\left(A^2+c\,A\right)^{\fra c{4}{3}}}{c^{\frac{8}{3}}}-\ifrac{24\,\left(A^2+c\,A\right)^{\frac{2}{3}}}{c^ {\frac{4}{3}}}+20\right)+c\,\left(-\ifrac{12\,A^2\,\left(A^2+c\,A\right)^{\frac{2}{3} }}{c^{\frac{4}{3}}}-\ifrac{4\,A^2\,\left(A^2+c\,A\right)^{\frac{1}{3}} }{c^{\frac{2}{3}}}\right)

+ c^5\,\left(\ifrac{72\,\l eft(A^2+c\,A\right)^{\frac{2}{3}}}{c^{\frac{4}{3}} }-44\right)+c^2\,\left(9\,A-\ifrac{2\,A\,\left(A^2+c\,A\right)^{\frac{1}{3}}}{ c^{\frac{2}{3}}}\right)+7\,A^3-40\,c^4\,A<br /> <br />

The /newline command didn't work.
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Since ##px^9+q## is the factor, then ##x^9=\frac{-q}{p}## will be one of the roots. Let ##f(x)=27x^{18}+bx^9+70##, then: $$27\left(\frac{-q}{p}\right)^2+b\left(\frac{-q}{p}\right)+70=0$$ $$b=27 \frac{q}{p}+70 \frac{p}{q}$$ $$b=\frac{27q^2+70p^2}{pq}$$ From this expression, it looks like there is no greatest value of ##b## because increasing the value of ##p## and ##q## will also increase the value of ##b##. How to find the greatest value of ##b##? Thanks
Back
Top