Gregg
- 452
- 0
Homework Statement
Express the determinant as a product of 4 linear factors
<br /> \left(<br /> \begin{array}{ccc}<br /> a & \text{bc} & b+c \\<br /> b & \text{ac} & a+c \\<br /> c & \text{ab} & a+b<br /> \end{array}<br /> \right)
b hence or otherwise find the values of a for which the sumultaneous equations.
<br /> ax+2t+3z=0<br />
<br /> 2x+ay+(1+a)z=0<br />
<br /> x+2ay+(2+a)z=0<br />
have a solution other than x=y=z=0
ii) solve the equations when a=-3
The Attempt at a Solution
<br /> \text{Det}\left[\left(<br /> \begin{array}{ccc}<br /> a & \text{bc} & b+c \\<br /> b & \text{ac} & a+c \\<br /> c & \text{ab} & a+b<br /> \end{array}<br /> \right)\right] = (a-b)(c-b)(a-c)(a+b+c)<br />
I get the right answers for part 2 of 1,2,-3. I don't know why that determinant of 0 implies that solution.
for the last part i get
x=\frac{5\lambda}{3}
y=\lambda
z=\lambda
r=\lambda\left(<br /> \begin{array}{c}<br /> \frac{5}{3} \\<br /> 1 \\<br /> 1<br /> \end{array}<br /> \right)
The answer is
r = \lambda\left(<br /> \begin{array}{c}<br /> 1 \\<br /> 0 \\<br /> 1<br /> \end{array}<br /> \right) ?