Solving Equations Involving A⁻¹, B⁻¹ and C⁻¹

  • Thread starter Thread starter fazal
  • Start date Start date
  • Tags Tags
    Solving equations
AI Thread Summary
To solve the equations involving A⁻¹, B⁻¹, and C⁻¹, the following approaches were discussed. For the equation AX = C, the solution is X = A⁻¹C. In the case of AXB = C, the solution is X = A⁻¹CB⁻¹. For BXA = C + B, the solution is X = B⁻¹(C + B)A⁻¹. Lastly, for XABC = D, the solution is X = B⁻¹C⁻¹D. The importance of the order of matrix multiplication was emphasized throughout the discussion.
fazal
Messages
24
Reaction score
0
Given that A^-1 , B^-1 and C^-1 exist, solve the following equations for X:

a)AX=C
b)AXB=C
c)BXA=C+B
d)XABC=D

plse help...
 
Mathematics news on Phys.org
fazal said:
Given that A^-1 , B^-1 and C^-1 exist, solve the following equations for X:

a)AX=C
b)AXB=C
c)BXA=C+B
d)XABC=D

plse help...
a) Multiply both sides of the equation on the left by A-1:
A-1AX= X= A-1C.
b) Multiply both sides of the equation on the left by A-1 and on the right by B-1:
A-1AXBB-1= X= A-1CB-1

Can you try c and d now?
 
so
c) X=(C+B)A^-1B^-1

d)X=B^-1C^-1D

plse check thks
 
c)BXA=C+B

Therefore XA = B^(-1)(C+B) therefore X = B^(-1)(C+B)A^(-1)

Remember matrix multiplication is NOT commutative.

Do the same steps for d), note ORDER MATTERS
 
Last edited:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top