Solving Equations with Moduli - Guidelines & Tips

  • Thread starter Thread starter Astudious
  • Start date Start date
AI Thread Summary
To solve equations involving moduli, start by isolating the modulus on one side, leading to an equation like |f(x)| = g(x). Use the definition of absolute value to create two separate equations: g(x) = f(x) and g(x) = -f(x). After solving these equations, check each solution to ensure g(x) is non-negative, as negative values are not valid for moduli. For more complex equations like |f(x)| + |g(x)| = h(x), square both sides to eliminate the moduli, transforming the equation into a solvable form. This approach provides a systematic method for tackling equations with moduli effectively.
Astudious
Messages
61
Reaction score
0
How does one go about solving equations in one variable which contain moduli? For instance, those of the form f(x,|x|)=0 or f(x,|g(x)|) more generally.

Obviously I don't expect a completely "one-size fits all" solution, but a general approach to dealing with the moduli is what I'm looking for. (i.e. let's assume that, once the moduli are gone, I will be able to deal satisfactorily with the remaining equation.)
 
Mathematics news on Phys.org
Astudious said:
How does one go about solving equations in one variable which contain moduli? For instance, those of the form f(x,|x|)=0 or f(x,|g(x)|) more generally.

Obviously I don't expect a completely "one-size fits all" solution, but a general approach to dealing with the moduli is what I'm looking for. (i.e. let's assume that, once the moduli are gone, I will be able to deal satisfactorily with the remaining equation.)

Get the modulus on one side, and everything else on the other side.

##|f(x)| = g(x)##

Using the definition of the absolute value, ##|a| = a## if ##a## is positive (or 0), and ##|a| = -a## if ##a## is negative, we have two equations:

##g(x) = f(x)##
##g(x) = -f(x)##

You might get extraneous solutions though, so always plug in the values you found into ##g(x)## and make sure ##g(x)## is positive (or zero). If you find that ##g(x)## is negative for a particular value, ignore this solution, since the absolute value of any real number is greater than or equal to zero by definition.

Hope this helps.

By the way, the functions ##f## and ##g## I used in my explanation are in no way related to those in your post, so don't get confused.
 
MohammedRady97 said:
Get the modulus on one side, and everything else on the other side.

##|f(x)| = g(x)##

Using the definition of the absolute value, ##|a| = a## if ##a## is positive (or 0), and ##|a| = -a## if ##a## is negative, we have two equations:

##g(x) = f(x)##
##g(x) = -f(x)##

You might get extraneous solutions though, so always plug in the values you found into ##g(x)## and make sure ##g(x)## is positive (or zero). If you find that ##g(x)## is negative for a particular value, ignore this solution, since the absolute value of any real number is greater than or equal to zero by definition.

Hope this helps.

By the way, the functions ##f## and ##g## I used in my explanation are in no way related to those in your post, so don't get confused.

Thanks. So we just rearrange into the form above, and then solve the two equations

##g(x) = f(x)##
##g(x) = -f(x)##

and use the superset of the solutions, removing any solutions which lead to g(x)<0 since no modulus of f(x) can equal them.

What if it were something like

##|f(x)| + |g(x)| = h(x)##

?
 
Astudious said:
Thanks. So we just rearrange into the form above, and then solve the two equations

##g(x) = f(x)##
##g(x) = -f(x)##

and use the superset of the solutions, removing any solutions which lead to g(x)<0 since no modulus of f(x) can equal them.

What if it were something like

##|f(x)| + |g(x)| = h(x)##

?
Astudious said:
Thanks. So we just rearrange into the form above, and then solve the two equations

##g(x) = f(x)##
##g(x) = -f(x)##

and use the superset of the solutions, removing any solutions which lead to g(x)<0 since no modulus of f(x) can equal them.

What if it were something like

##|f(x)| + |g(x)| = h(x)##

?

Square both sides.

##[|f(x)| + |g(x)|]^2 = h(x)^2##
##|f(x)|^2 + 2|f(x)||g(x)| + |g(x)|^2 = h(x)^2##

Recall that ##a^2 = |a|^2## and ##|a||b| = |ab|##

##f(x)^2 + 2|f(x)g(x)| + g(x)^2 = h(x)^2##
##|f(x)g(x)| = \frac{1}{2} [h(x)^2 - f(x)^2 - g(x)^2]##

You now have the equation in the form you mentioned in your first post.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
11
Views
3K
Replies
5
Views
2K
Replies
5
Views
1K
Replies
1
Views
2K
Replies
16
Views
3K
Back
Top