MHB Solving Exponents: Simplifying Radical Expressions

  • Thread starter Thread starter CSmith1
  • Start date Start date
  • Tags Tags
    Exponent
CSmith1
Messages
39
Reaction score
0
1.) 8 3/2

=(81/2)3
=(2 squareroot 8)2

(2 square root 2x2x2)3

=(2 square root )3
=2 square root x 2 square root x 2 square root=8 (2 square root)
=16 square root 2
 
Mathematics news on Phys.org
CSmith said:
1.) 8 3/2

=(81/2)3
=(2 squareroot 8)2

(2 square root 2x2x2)3

=(2 square root )3
=2 square root x 2 square root x 2 square root=8 (2 square root)
=16 square root 2

It's a little hard to follow your work but the final answer is correct! (Clapping)
 
Thanks!:) I am trying...
 
how do i know when the answer should be in square root form like 16 square root 2 or when it is suppose to be in powers like my answer for 32 2/5 when the answer was 2^2.
 
CSmith said:
how do i know when the answer should be in square root form like 16 square root 2 or when it is suppose to be in powers like my answer for 32 2/5 when the answer was 2^2.

The final answer to that problem is 4. There's no reason to write it as 2^2.

With square roots, you simplify as much as you can until you are left with a prime number, so you must keep the square root sign or use a decimal approximation, which is not preferred. If you have something like [math]\sqrt{20}[/math] then you can simplify it but there will be a square root in the final answer.
 
Last edited:
Jameson said:
The final answer to that problem is 4. There's no reason to write it as 2^2.

With square roots, you simplify as much as you can until you are left with a prime number, so you must keep the square root sign or use a decimal approximation, which is not preferred. If you have something like [math]\sqrt{20}[/math] then you can simplify it but there will be a square root in the final answer.

True so far as it goes. An engineering professor is not necessarily going to want a highly complicated but exact answer when an easy-to-understand decimal approximation helps the bridge get built more easily.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
41
Views
5K
Replies
4
Views
2K
Replies
5
Views
1K
Replies
7
Views
2K
Replies
11
Views
3K
Replies
7
Views
2K
Back
Top