MHB Solving g(x)-h(x) <0: Find a, b, c, d

  • Thread starter Thread starter Manal
  • Start date Start date
Click For Summary
The discussion focuses on solving the inequality g(x) - h(x) < 0, where g(x) is defined as the absolute value of f(x) and h(x) is a quadratic function. The analysis involves examining the behavior of f(x) across three intervals: x < 0, 0 < x < 1, and x > 1, leading to the formulation of cubic inequalities for each interval. For x < 0, the inequality simplifies to x^3 + 3x + 1 < 0, while for 0 < x < 1, it becomes x^3 + 5x - 1 > 0. Lastly, for x > 1, the inequality also results in x^3 + 3x + 1 > 0, indicating the need to find the intervals where these conditions hold true.
Manal
Messages
2
Reaction score
0
We have :
f(x) =(1-x) ÷x, x is in IR*
g(x)=|f(x)|
h(x) =4-x^2
Solve g(x)-h(x) <0 (not with a graph)
( I tried solving so , S=]a, b[ U ]c,d[., but i don't know what are a, b, c and d. I would appreciate the help a bunch)
 
Mathematics news on Phys.org
Since $$\left|\frac{1-x}{x}\right|=\frac{|1-x|}{|x|}$$, absolute values can be eliminated on each of the intervals $(-\infty,0)$, $(0,1)$ and $[1,\infty)$ where $1-x$ and $x$ have definite signs. On each interval you get a cubic inequality.
 
[math]f(x)= \frac{1- x}{x}= \frac{1}{x}- 1[/math] is 0 at x= 1 and is not continuous at x= 0. Those are the only places f can change sign. If x= -1, f(-1)= -2 so f(x) is negative for all x less than 0. If x= 1/2 f(1/2)= 2- 1= 1 so f(x) is positive for all x between 0 and 1. Finally, if x= 2, f(x)= 1/2- 1= -1/2 so x is negative for all x greater than 1.

g(x)= |f(x)|= 1- 1/x for x< 0
g(x)= 1/x- 1 for 0< x< 1
g(x)= 1- 1/x for 1< x.

If x< 0, g(x)- h(x)= 1- 1/x- 4- x^2= -x^2- 1/x- 3 for x< 0 so you want to solve -x^2- 1/x- 3< 0. Multiplying by -x, which is positive, x^3+ 3x+ 1< 0.

If 0< x< 1, g(x)- h(x)= 1/x- 1- 4- x^2= -x^2+ 1/x- 5 so you want to solve -x^2+ 1/x- 5< 0. Multiplying by -x, which is negative, x^3+ 5x- 1> 0.

If x> 1, g(x)- h(x)= 1-1/x- 4- x^2= -x^2- 1/x- 3 so you want to solve -x^2- 1/x- 3<0. Multiplying by -x, which is negative, x^3+ 3x+ 1> 0.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K
Replies
1
Views
1K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K