MHB Solving g(x)-h(x) <0: Find a, b, c, d

  • Thread starter Thread starter Manal
  • Start date Start date
AI Thread Summary
The discussion focuses on solving the inequality g(x) - h(x) < 0, where g(x) is defined as the absolute value of f(x) and h(x) is a quadratic function. The analysis involves examining the behavior of f(x) across three intervals: x < 0, 0 < x < 1, and x > 1, leading to the formulation of cubic inequalities for each interval. For x < 0, the inequality simplifies to x^3 + 3x + 1 < 0, while for 0 < x < 1, it becomes x^3 + 5x - 1 > 0. Lastly, for x > 1, the inequality also results in x^3 + 3x + 1 > 0, indicating the need to find the intervals where these conditions hold true.
Manal
Messages
2
Reaction score
0
We have :
f(x) =(1-x) ÷x, x is in IR*
g(x)=|f(x)|
h(x) =4-x^2
Solve g(x)-h(x) <0 (not with a graph)
( I tried solving so , S=]a, b[ U ]c,d[., but i don't know what are a, b, c and d. I would appreciate the help a bunch)
 
Mathematics news on Phys.org
Since $$\left|\frac{1-x}{x}\right|=\frac{|1-x|}{|x|}$$, absolute values can be eliminated on each of the intervals $(-\infty,0)$, $(0,1)$ and $[1,\infty)$ where $1-x$ and $x$ have definite signs. On each interval you get a cubic inequality.
 
[math]f(x)= \frac{1- x}{x}= \frac{1}{x}- 1[/math] is 0 at x= 1 and is not continuous at x= 0. Those are the only places f can change sign. If x= -1, f(-1)= -2 so f(x) is negative for all x less than 0. If x= 1/2 f(1/2)= 2- 1= 1 so f(x) is positive for all x between 0 and 1. Finally, if x= 2, f(x)= 1/2- 1= -1/2 so x is negative for all x greater than 1.

g(x)= |f(x)|= 1- 1/x for x< 0
g(x)= 1/x- 1 for 0< x< 1
g(x)= 1- 1/x for 1< x.

If x< 0, g(x)- h(x)= 1- 1/x- 4- x^2= -x^2- 1/x- 3 for x< 0 so you want to solve -x^2- 1/x- 3< 0. Multiplying by -x, which is positive, x^3+ 3x+ 1< 0.

If 0< x< 1, g(x)- h(x)= 1/x- 1- 4- x^2= -x^2+ 1/x- 5 so you want to solve -x^2+ 1/x- 5< 0. Multiplying by -x, which is negative, x^3+ 5x- 1> 0.

If x> 1, g(x)- h(x)= 1-1/x- 4- x^2= -x^2- 1/x- 3 so you want to solve -x^2- 1/x- 3<0. Multiplying by -x, which is negative, x^3+ 3x+ 1> 0.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
3
Views
1K
Replies
0
Views
1K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
10
Views
1K
Replies
7
Views
2K
Replies
1
Views
665
Back
Top