Solving Integral \int_{a}^{b}\frac{e^{x}x^{4}}{e^{x}-1}dx

  • Context: MHB 
  • Thread starter Thread starter phymat
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
SUMMARY

The forum discussion focuses on solving the integral $$\int_{a}^{b}\frac{e^{x}x^{4}}{e^{x}-1}\text{dx}$$, where $$a$$ and $$b$$ are real numbers. Participants highlight the complexity of the integral and suggest that it requires advanced techniques in calculus, particularly involving series expansion or numerical methods for evaluation. The discussion emphasizes that a complete solution is not provided, indicating the need for further exploration of integration techniques.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with series expansion methods
  • Knowledge of numerical integration techniques
  • Experience with mathematical software for symbolic computation
NEXT STEPS
  • Research series expansion techniques for integrals
  • Learn about numerical integration methods such as Simpson's Rule or Trapezoidal Rule
  • Explore symbolic computation tools like Wolfram Alpha or MATLAB for integral evaluation
  • Study advanced calculus topics, particularly improper integrals and convergence
USEFUL FOR

Mathematicians, calculus students, and anyone interested in advanced integration techniques and numerical methods for evaluating complex integrals.

phymat
Gold Member
MHB
Messages
170
Reaction score
2
$$\int_{a}^{b}\frac{e^{x}x^{4}}{e^{x}-1}\text{dx}$$

where $$a$$ and $$b$$ are Real Numbers.
 
Physics news on Phys.org
This is not a complete solution

I am going to add the restrictions $b>a>0$ and $x$ instead of $x^4$

$$\int^b_a \frac{x e^{x}}{e^{x}-1}\,dx = \int^b_a x \,dx+\int^b_a \frac{x}{e^{x}-1}\,dx = \frac{b^2-a^{2}}{2}+ I(a,b)$$

Now for that integral we can rewrite it as

$$I(a,b)=\int^b_0 \frac{x}{e^x-1}\,dx-\int^a_0\frac{x}{e^x-1}\,dx$$

Now let us look at the following

$$I(a) = \int^a_0 \frac{x}{e^x-1}\,dx= \int^a_0xe^{-x} \sum_{n\geq 0}e^{-nx} = \sum_{n\geq 0}\int^a_0 xe^{-x(n+1)}\,dx$$

$$=\sum_{n\geq 0}\frac{1}{(n+1)^2}-\frac{e^{-(n+1) a}}{(n+1)^2} -\frac{ae^{-(n+1) a}}{(n+1)} = \zeta(2)+a\log(1-e^{-a})-\mathrm{Li}_2(e^{-a})$$

Let us take $a \to \infty$

$$\int^\infty_0 \frac{x}{e^{x}-1}= \zeta(2)+\lim_{a \to \infty}a\log(1-e^{-a})-\mathrm{Li}_2(0)=\frac{\pi^2}{6}$$

Hence

$$I(a,b)= b\log(1-e^{-b})-a\log(1-e^{-a})+\mathrm{Li}_2(e^{-a}) -\mathrm{Li}_2(e^{-b})$$

The method could be generalized for

$$\int^b_a \frac{x^{n}e^{x}}{e^{x}-1}\,dx$$
 

Similar threads

  • · Replies 30 ·
2
Replies
30
Views
1K
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K