l'Hôpital
- 255
- 0
Hi, I was just wondering if these integrals could be solved analytically, or if I would just have to resort to approximations.
<br /> \int_{0}^{\infty} \sqrt{1 + \omega E^2} E^n ln(1 + \omega E^2) \frac{e^{\phi E}}{(\lambda e^{\phi E} + 1)^2} dE<br />
For
<br /> n = 1, 1/2, 2, 3/2<br />
<br /> \int_{0}^{\infty} \sqrt{1 + \omega E^2} E^n ln(1 + \omega E^2) \frac{e^{\phi E}}{(\lambda e^{\phi E} + 1)^2} dE<br />
For
<br /> n = 1, 1/2, 2, 3/2<br />