matematikawan
- 336
- 0
When trying to solve a pde using Laplace transform, I need to invert an expression of the form
\frac{\exp{(-as-b\sqrt{s})}}{s^2}
A friend told me that Mathematica cannot invert such expression. I try using convolution but a bit loss when trying to evaluate the integral of Erfc(.).
L^{-1}\{\frac{\exp{(-as-b\sqrt{s})}}{s^2} \}
=L^{-1} \{ \frac{e^{-as}}{s} \} * L^{-1} \{ \frac{e^{-b\sqrt{s}}}{s} \}
=H(t-a) * Erfc(\frac{b}{2\sqrt{t}}\)
=\int_0^t H(t-\tau-a) Erfc(\frac{b}{2\sqrt{\tau}}\) d\tau
How do we proceed from here?
\frac{\exp{(-as-b\sqrt{s})}}{s^2}
A friend told me that Mathematica cannot invert such expression. I try using convolution but a bit loss when trying to evaluate the integral of Erfc(.).
L^{-1}\{\frac{\exp{(-as-b\sqrt{s})}}{s^2} \}
=L^{-1} \{ \frac{e^{-as}}{s} \} * L^{-1} \{ \frac{e^{-b\sqrt{s}}}{s} \}
=H(t-a) * Erfc(\frac{b}{2\sqrt{t}}\)
=\int_0^t H(t-\tau-a) Erfc(\frac{b}{2\sqrt{\tau}}\) d\tau
How do we proceed from here?