Laven
- 13
- 0
\lim_{x\rightarrowy}\frac{sin{x}-sin{y}}{x-y}
so this is the question.
I'm here solving this problem you please check where am i wrong or next idea I've to use here.
=\lim_{x\rightarrowy}\frac{sin{x}-sin{y}}{x-y}x\frac{cos{x}+cos{y}}{cos{x}+cos{y}}
=\frac{sin{x}cos{x}-sin{y}cos{y}+sin{x}cos{y}-cos{x}sin{y}}{{x-y}{cos{x}+cos{y}}
=\lim_{x\rightarrowy}\frac{sin{x}cos{x}-sin{y}cos{y}+sin{x-y}}{{x-y}{cos{x}+cos{y}} +\fracsin{x-y}{(x-y)(cos{x}+cos{y})}[/tex]
after this i don't 've idea wht to do.Is there next idea we have to include overhere?
so this is the question.
I'm here solving this problem you please check where am i wrong or next idea I've to use here.
=\lim_{x\rightarrowy}\frac{sin{x}-sin{y}}{x-y}x\frac{cos{x}+cos{y}}{cos{x}+cos{y}}
=\frac{sin{x}cos{x}-sin{y}cos{y}+sin{x}cos{y}-cos{x}sin{y}}{{x-y}{cos{x}+cos{y}}
=\lim_{x\rightarrowy}\frac{sin{x}cos{x}-sin{y}cos{y}+sin{x-y}}{{x-y}{cos{x}+cos{y}} +\fracsin{x-y}{(x-y)(cos{x}+cos{y})}[/tex]
after this i don't 've idea wht to do.Is there next idea we have to include overhere?