Solving ODE dy/dx = (x+y)^2 , y(0)=1

  • Thread starter Thread starter mat331760298
  • Start date Start date
  • Tags Tags
    Ode
mat331760298
Messages
13
Reaction score
0
solve dy/dx = (x+y)^2 , y(0)=1

i let w = (x+y) and got the above equation rearranged to dw/dx - 1=w^2

after solving for C i got y=tan(x-pi/4) - x

just wanted to check my answer
 
Physics news on Phys.org


w = (x+y) then
dw/dx = 1+dy/dx
dw/dx = 1 + w^2

this part looks ok
 


then
w = x+y=x+(tan(x-pi/4)-x) = tan(x-pi/4)
dw/dx = sec(x-pi/4)^2 = 1+tan(x-pi/4)^2
 


just remains to check IC
w(0) = tan(-pi/4)

does that look correct?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top