dirtydog
- 3
- 0
Hi I am having a bit of difficulty working with plane polar co-ordinates.
We have:
r^2 = x^2 + z^2
x = r cos \theta
z=r sin \theta
I wish to find \frac {\partial r} {\partial x}
Using r^2 = x^2 + z^2
We have:
\frac {\partial (r^2)} {\partial x} = \frac {\partial (x^2)} {\partial x} + \frac {\partial (z^2)} {\partial x}
Thus 2r\frac {\partial r} {\partial x} = 2x
\frac {\partial r} {\partial x} = \frac {x} {r} = \frac {r cos \theta} {r}
Therefore \frac {\partial r} {\partial x} = cos \theta
But if we find \frac {\partial r} {\partial x} using x = r cos \theta
We have:
r = \frac {x} {cos \theta}
Therefore \frac {\partial r} {\partial x} = \frac {1} {cos \theta}
What is going on here? Which answer is wrong and why?
We have:
r^2 = x^2 + z^2
x = r cos \theta
z=r sin \theta
I wish to find \frac {\partial r} {\partial x}
Using r^2 = x^2 + z^2
We have:
\frac {\partial (r^2)} {\partial x} = \frac {\partial (x^2)} {\partial x} + \frac {\partial (z^2)} {\partial x}
Thus 2r\frac {\partial r} {\partial x} = 2x
\frac {\partial r} {\partial x} = \frac {x} {r} = \frac {r cos \theta} {r}
Therefore \frac {\partial r} {\partial x} = cos \theta
But if we find \frac {\partial r} {\partial x} using x = r cos \theta
We have:
r = \frac {x} {cos \theta}
Therefore \frac {\partial r} {\partial x} = \frac {1} {cos \theta}
What is going on here? Which answer is wrong and why?