Solving Rational Functions: Rewriting Equation to Get R(z)=...

Ratzinger
Messages
291
Reaction score
0
http://planetmath.org/encyclopedia/CPlace.html, how do I rewrite (2) to get the third equation R(z)=... ?

thank you
 
Mathematics news on Phys.org
remember the rational function will produce a quotient, which when multiplied by the divisor will yeild the original R(z). So the second expression is in the form R(z) = quotient x divisor.

More specifically (z-a_j)^uj X S_j(z) .. Where as they said S_j(z) is the rational fuction ( which was the quotient ). It is not that much about "deriving" the third form but more showing that the complex function R(z) is a product of the number of roots ( z-a_j) and the quotient S_j(z).

My 2 cents - correct if neccesary.
 
Last edited:
thanks for answering!

But what do you mean by qoutient produced by a rational function? The rational is a quotient of two polynomials, so what quotient is it producing?
 
Take
<br /> S_j(z) = \frac{a_0(z-\alpha_1)^{\mu_1}(z-\alpha_2)^{\mu_2}\cdots(z-\alpha_{j - 1})^{\mu_{j - 1}}(z-\alpha_{j + 1})^{\mu_{j + 1}}\cdots(z-\alpha_r)^{\mu_r}} {b_0(z-\beta_1)^{\nu_1}(z-\beta_2)^{\nu_2}\ldots(z-\beta_s)^{\nu_s}},<br />
:smile:
 
The equation labled (3) is not derived directly from equation (2). What they have done is write the product of all terms in the numerator of (2) as P(z) and the product of all terms in the denominator as Q(z):
R(z)= P(z)/Q(z).

Then they look at R(z)- c= P(z)/Q(z)- c. Getting the common denominator (Q(z)) you have P(z)/Q(z)- cQ(z)/Q(z)= (P(z)- cQ(z))/Q(z)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top