Solving Series: Does \sum_{n=1}^{\infty}\frac{1}{n^{1+\frac{1}{n}}} Converge?

  • Thread starter Thread starter azatkgz
  • Start date Start date
  • Tags Tags
    Series
azatkgz
Messages
182
Reaction score
0

Homework Statement



Determine whether the series converges or diverges.


\sum_{n=1}^{\infty}\frac{1}{n^{1+\frac{1}{n}}}

The Attempt at a Solution



\sum_{n=1}^{\infty}\frac{1}{nn^{\frac{1}{n}}}=\sum_{n=1}^{\infty}\frac{1}{ne^{\frac{1}{n}\ln n}}

\lim_{n\rightarrow\infty}\frac{\ln n}{n}=0

\sum_{n=1}^{\infty}\frac{1}{ne^0}=\sum_{n=1}^{\infty}\frac{1}{n}

Series diverges.
 
Physics news on Phys.org
Are you applying some form of the limit comparison test? If so, then you're right.
 
\lim_{n\rightarrow\infty}\frac{1/ne^{\frac{1}{n}\ln n}}{1/n}=1

so both of them diverge
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top