azatkgz
- 182
- 0
Homework Statement
Determine whether the series converges or diverges.
\sum_{n=1}^{\infty}\log_{b^n}\left(1+\frac{\sqrt[n]{a}}{n}\right)
where a,b>0 some parameters.
The Attempt at a Solution
\sum_{n=1}^{\infty}\frac{\ln \left(1+\frac{\sqrt[n]{a}}{n}\right)}{\ln b^n }=\sum_{n=1}^{\infty}\frac{\left(\frac{\sqrt[n]{a}}{n}-O\left(\frac{a^{\frac{2}{n}}}{n^2}\right)\right)}{n\ln b}}
=\sum_{n=1}^{\infty}\frac{\sqrt[n]{a}}{n^2\ln b}-\sum_{n=1}^{\infty}O\left(\frac{a^{\frac{2}{n}}}{n^3\ln b}\right)
So my solution is series converges.