Solving Simple Harmonic Motion Question

AI Thread Summary
In the discussion on solving a simple harmonic motion (SHM) problem, the main focus is on the effects of imparting an initial velocity to a particle at maximum displacement. The participant questions whether to treat this scenario as a new SHM or continue from the existing motion, considering the implications for equations of motion. They seek clarity on the choice of reference points for the center and maximum displacement in the context of the new initial conditions. Additionally, the participant faces challenges in deriving the equation of motion, leading to complex results during integration. The discussion emphasizes the need for a clear understanding of how initial conditions affect SHM equations.
acmmanoj
Messages
3
Reaction score
0
I am having a question and tries to solve a problem for days. Consider general SHM. When the particle reaches to the maximum displacement, a if a velocity U is given to the particle towards to the center of SHM, (keeping the same force mω^2x)

1. What would happen to the SHM...is it same or can i use same equations or should i derive equation again

Should i consider this as new SHM ( X=a when t=0) or should i continue from same SHM (X=0 when T=0)

2. if i derive again, which point should i considered as center, what will happen to the displacement and maximum displacement...is it same or difference

3. when tries to get equation of motion as x=asin(ωt) from intergartion it produces a very complex equation. (in intergration i took, when x=a , v=u and x=a t=0)
 
Physics news on Phys.org
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top