MHB Solving Sine Rule Question: Angle B & A in Triangle ABC

  • Thread starter Thread starter ai93
  • Start date Start date
  • Tags Tags
    Sine
ai93
Messages
54
Reaction score
0
I understand how to use the Sine rule, but I think I may get stuck halfway through!

My questions is:
In a Triangle ABC the angle at C is 48.15 degrees, side AB is 15.3m and side AC is 17.6m.
Calculate the size of angle B and angle A, giving all possible solutions, in degrees accurate to 1 d.p.

I used the Sine rule.
$$\frac{SinB}{17.6}=\frac{Sin(48.15)}{15.3}$$
$$\therefore$$$$SinB=\frac{15.3}{Sin(48.15)x17.6} = 0.86$$

so, B=$$Sin^{-1}(0.86)$$
B= 59 degrees.

I understand up to here, but in the solution B can = 59 or 120.9 degrees. Where I am not sure where 120.9 comes from!

Therefore I can only solve for B but not for A. Any help?
 
Mathematics news on Phys.org
There are two angles for which:

$$\sin(B)\approx0.86$$ and $$0^{\circ}<B<180^{\circ}$$

You found the first quadrant angle, but recall the identity:

$$\sin\left(180^{\circ}-\theta\right)=\sin(\theta)$$

Therefore, we also find that it may be possible that:

$$B\approx180^{\circ}-\arcsin(0.86)\approx120.68^{\circ}$$

Now, since:

$$120.68+48.15=168.83<180$$

We know there are two possible triangles that satisfy the given conditions. You can read more about the ambiguous case here:

Law of sines - Wikipedia, the free encyclopedia
 
MarkFL said:
There are two angles for which:

$$\sin(B)\approx0.86$$ and $$0^{\circ}<B<180^{\circ}$$

You found the first quadrant angle, but recall the identity:

$$\sin\left(180^{\circ}-\theta\right)=\sin(\theta)$$

Therefore, we also find that it may be possible that:

$$B\approx180^{\circ}-\arcsin(0.86)\approx120.68^{\circ}$$

Now, since:

$$120.68+48.15=168.83<180$$

We know there are two possible triangles that satisfy the given conditions. You can read more about the ambiguous case here:

Law of sines - Wikipedia, the free encyclopedia

I fairly understand..

So, since we found out the first quadrant, angle B which is 59 degrees.
We can say B $$\approx180 - sin^{-1}(0.86)\approx120.86$$

Can I ask when do we know that the angle can have two solutions?

We have angle C as 48.15, angle B can be either 59 or 120. Or can angle A be 168.
Sorry, abit confused!
 
We know there can be two triangles because:

$120.68+48.15=168.83<180$

Because the sum of the given angle and the larger possibility is less than $180^{\circ}$, we know this leaves room for the third angle.

So, when $\angle B\approx 59.32^{\circ}$ then $\angle A\approx180^{\circ}-\left(48.15+59.32\right)^{\circ}$ and when $\angle B\approx 120.68^{\circ}$ then $\angle A\approx180^{\circ}-\left(48.15+120.68\right)^{\circ}$. This is because the sum of the three interior angles of a triangle is always $180^{\circ}$.
 
MarkFL said:
We know there can be two triangles because:

$120.68+48.15=168.83<180$

Because the sum of the given angle and the larger possibility is less than $180^{\circ}$, we know this leaves room for the third angle.

So, when $\angle B\approx 59.32^{\circ}$ then $\angle A\approx180^{\circ}-\left(48.15+59.32\right)^{\circ}$ and when $\angle B\approx 120.68^{\circ}$ then $\angle A\approx180^{\circ}-\left(48.15+120.68\right)^{\circ}$. This is because the sum of the three interior angles of a triangle is always $180^{\circ}$.

Thanks! Makes a lot more sense now :D
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top