RooccoXXI
- 2
- 0
Hi. I'm trying to make a small simulation of several simple physical systems (C++). I have the differential equation of a spherical pendulum with only the gravity force and without friction.
\theta'' = \sin(\theta) (\cos(\theta) \phi'^2 − \frac{g}{L})
\phi'' = −2 \cot(\theta) \theta' \phi'
I need the equation of spherical pendulum with friction (F = -bv) and with a generalized force (not only gravity), like this equation for the plane pendulum:
\Omega = \frac{1}{mL} (\cos(\Omega)\overline{F}_{ext}\ \overline{d} − \sin(\Omega) \overline{F}_{ext}\\frac{\overline{g}}{g}− \frac{b}{L} \Omega')
Any ideas?
Thank you,
R.
\theta'' = \sin(\theta) (\cos(\theta) \phi'^2 − \frac{g}{L})
\phi'' = −2 \cot(\theta) \theta' \phi'
I need the equation of spherical pendulum with friction (F = -bv) and with a generalized force (not only gravity), like this equation for the plane pendulum:
\Omega = \frac{1}{mL} (\cos(\Omega)\overline{F}_{ext}\ \overline{d} − \sin(\Omega) \overline{F}_{ext}\\frac{\overline{g}}{g}− \frac{b}{L} \Omega')
Any ideas?
Thank you,
R.