Solving Stirling's Formula: 5000 Objects from 10000

  • Thread starter Thread starter superwolf
  • Start date Start date
  • Tags Tags
    Formula
superwolf
Messages
179
Reaction score
0
How many ways are there to choose 5000 objects out of a jar full of 10 000 distinct objects?

ATTEMPT:

Number of ways = (10000 5000)

ln 10000! = 10000 ln 10000 - 10 000 + 0.5ln(2*pi*M) = 82108 --> 10000! = e^82108

I still get overflow on my calculator!
 
Physics news on Phys.org
oooh … paper!

Hi superwolf! :smile:
superwolf said:
ln 10000! = 10000 ln 10000 - 10 000 + 0.5ln(2*pi*M) = 82108 --> 10000! = e^82108

I still get overflow on my calculator!

then do it on paper first, putting in the 50005000, do a bit of cancelling, and then worry the poor old computer! :wink:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
8
Views
2K
Replies
3
Views
2K
Replies
21
Views
2K
Replies
17
Views
2K
Replies
2
Views
2K
Replies
5
Views
2K
Back
Top