Solving such integrals numerically?

  • Thread starter Thread starter TSN79
  • Start date Start date
  • Tags Tags
    Integrals
AI Thread Summary
The integral \int_{0}^{1} \frac{1}{\sqrt{100-x^5}} dx does not have a known analytical solution, prompting discussions on numerical methods for evaluation. Numerical techniques such as the Trapezoid rule and Simpson's rule are suggested for approximating the integral. The integral can be expressed in terms of hypergeometric functions, with different representations provided by Maple and Mathematica, raising questions about their equivalence. Despite the lack of an analytical solution, high precision numerical results are shared, with one participant expressing frustration over the reliance on software for such calculations. The conversation reflects a broader concern about the limitations in solving integrals analytically.
TSN79
Messages
422
Reaction score
0
Is there any way of solving \int_{0}^{1} \frac{1}{\sqrt{100-x^5}} dx by some regular method? If not, how does one go about solving such integrals numerically?
 
Mathematics news on Phys.org
1. I don't know about any method to crack this integral analytically.
2. As for numerical methods:
These typically start with some fancy finite Riemann sum to approximate the integral.
You could check up on the Trapezoid rule or Simpson's rule or some other rule..
 
\int_{0}^{1} \frac{dx}{\sqrt{100-x^{5}}} =\frac{1}{10} \ _{2}F_{1}\left(\frac{1}{2},\frac{1}{5},\frac{6}{5},\frac{1}{100}\right)

according to my friend,Maple.

Daniel.
 
According to Mathematica:

\int_{0}^{1} \frac{dx}{\sqrt{100-x^{5}}} = \frac{1}{10} \text{Hypergeometric2F1} \left[ \frac{1}{5},\frac{1}{2},\frac{6}{5},\frac{1}{100} \right]

Hmm wonder why the fractions are different, does it make a difference?

Anyway to 100 s.f:

0.1000836762086654607634453194543998535914445494139945308954127536431450557575506273354667189780577481
 
Last edited:
Conventions,on normal basis they should be the same...

Gauss's function is _{2}F_{1}\left(a,b,c,z\right)

Daniel.


P.S.Here are 125 sig.digs.

\allowbreak .\,10008\,36762\,08665\,46076\,34453\,19454\,39985\,35914\,44549\,41399\,45308\,95412\,
75364\,31450\,55757\,55062\,73354\,66718\,97805\,77480\,65696\,66047\,63945\,64052\,7984
 
Last edited:
dextercioby said:
P.S.Here are 125 sig.digs.

\allowbreak .\,10008\,36762\,08665\,46076\,34453\,19454\,39985\,35914\,44549\,41399\,45308\,95412\,
75364\,31450\,55757\,55062\,73354\,66718\,97805\,77480\,65696\,66047\,63945\,64052\,7984
Ahh so it's going to be like that is it, well in that case, to 2000 sf:

0.1000836762086654607634453194543998535914445494139945308954127536431450557575\
506273354667189780577480656966604763945640527983993080671953023089297911515248\
996013282637274784238797044064349870623646876674724483462693995830072965962405\
190019049666775160232759330205668592578946075338958508523904278007888848833088\
060488556739935166104773509141768174230265551654691550416849059337448757791416\
602630567642386763728600302390370505747803022415391215722818064179823297750442\
434640467815965016423148168846638958221953928239081869470007493153876431418021\
157217678724106639004941740270189408736496188721513628469894013953107138449253\
791957534610058071313307798195976366400486448615041008866156544661543944553681\
807447545511569915551726649431123256963503190869480487316815727122678140209122\
738110692425545202808759680890972292418663402273431929145662980727173557540648\
152030821410027920261779677495993071187486068413623093242779260125263946810946\
539669010663042017697120941744353678783323221747296966263595416822115595315497\
544773344894826763667430935304194135002414853743041716586627006645641572144003\
038754961014790401073888263046103372397829209944018459246323194799313562020937\
625258141676770207971455031095503662945181184143286220172118052176868976940819\
363006570343110478540840140496393128738996412270357183445395020573388989278555\
813556144036563102455032850874625946333692746942852322508699926140544281120662\
532525325402041764035161169228790566576239939498698256797892476673581793593341\
565591033055741801465791277510653241163913554713152060127185501516632153831744\
084485276203982058024033779697637618294711132918471464969716668181939944429129\
590221571580066039538720668949128150132064065578982106579514989803518960288881\
581003421562857862205496312407174042287815539537348909650284394685560662915042\
685107335399595953096758002153118745564316408031460221673554730734019949375781\
303013799317984319741189620338837708872894884720821818310366605811188532339923\
2084126619627384173536035029500741646467671020765461

:-p :-p :-p
 
Heh,i use a 10 y.o.Maple.It can't more than 1000 decimals.:frown:

Daniel.
 
It always breaks my heart if an integral has no analytical solution. I hate it when those damned Maple or Mathematica-programs are needed in order to crack the problem. Doesn't it disturbe you that we don't have a TOE when it come to integrals. You know, how about a String Theory-variant for integral-solving...i dunno, just wondering...

regards
marlon
 
I'm not pissed off.I like when the results come out in terms of "fancy functions" (i call them:"common special functions").

This is not really elementary mathematics...

Daniel.
 
Back
Top