Solving the Mystery of Number Theory: 1/3+1/3^2+1/3^3... + 1/3^n=1/2(1-1/3^n)

JCCol
Messages
25
Reaction score
0
I am new to number theory and i so far like it. I recently found this problem but there was no explanation of how they got it and i was wondering if any of you knew how they got it. It is this:

1/3+1/3^2+1/3^3... + 1/3^n=1/2(1-1/3^n)

Then they used:

1/4+1/4^2+1/4^3... + 1/4^n=1/3(1-1/4^n)

Now what i don't see is how they got that final equation (probably a dumb question) but i would appreciate it if anyone could help. Thanks.
 
Physics news on Phys.org
JCCol said:
I am new to number theory and i so far like it. I recently found this problem but there was no explanation of how they got it and i was wondering if any of you knew how they got it. It is this:

1/3+1/3^2+1/3^3... + 1/3^n=1/2(1-1/3^n)

Then they used:

1/4+1/4^2+1/4^3... + 1/4^n=1/3(1-1/4^n)

Now what i don't see is how they got that final equation (probably a dumb question) but i would appreciate it if anyone could help. Thanks.
It's the formula for a geometric series. Suppose we have a series:
\sum_{j=0}^{n}ar^j=a+ar+ar^2+ar^3+...+ar^n=a(1+r+r^2+r^3+...+r^n)
Just multiply and divide by (1-r) to get:
=a\frac{(1+r+r^2+r^3+...+r^n)(1-r)}{1-r}
When you expand out the multiplication on the top, most of the terms cancel:
=a\frac{1+r+r^2+r^3+...+r^n - r - r^2 - r^3 -r^4 -...-r^{n+1}}{1-r}
Canceling:
=a\frac{1-r^{n+1}}{1-r}
Now the first sum is just the sum
\sum_{j=0}^{n}ar^j
with a=(1/3) and r= (1/3) while in the second sum a and r are (1/4). Do out the subtraction on the denomenator and reciprocate to turn the division into multiplication and you'll come out with what you gave.

By the way, using math typesetting can make your posts clearer. Click on any equation to see how it was made. It is not too difficult to pick up on how to use.
 
Last edited:
Thank you this explains a lot and i will try to use math typeset.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top