latentcorpse
- 1,411
- 0
I have that \left( \frac{dR}{d \tau} \right)^2 = ( 1 - \epsilon)^2 ( \frac{R_{\text{max}}}{R}-1) describes the radius of the surface of a collapsing star in Schwarzschild geometry. I need to show it falls to R=0 in time \tau = \frac{\pi M}{(1-\epsilon)^{3/2}}
So far I have rearranged to get
\int_{R_{\text{max}}}^0 \sqrt{\frac{R}{R_{\text{max}}-R}} dR = \int_0^\tau (1-\epsilon^2)^{1/2} = (1-\epsilon^2)^{1/2} \tau
How do I do that R integral though?
Thanks.
So far I have rearranged to get
\int_{R_{\text{max}}}^0 \sqrt{\frac{R}{R_{\text{max}}-R}} dR = \int_0^\tau (1-\epsilon^2)^{1/2} = (1-\epsilon^2)^{1/2} \tau
How do I do that R integral though?
Thanks.