Solving $(x+2011)(x+2012)(x+2013)(x+2014)+1=0$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around finding all real solutions to the equation $(x+2011)(x+2012)(x+2013)(x+2014)+1=0$. The scope includes mathematical reasoning and problem-solving techniques.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Post 1 and Post 2 both present the same problem statement without additional context or solutions.
  • Post 3 expresses gratitude towards a participant named Pranav for providing a neat solution, indicating that a solution was shared but not detailed in the post.
  • Post 4 similarly thanks Pranav and mentions the importance of applying skill in problem-solving, though it does not provide a specific solution or method.
  • Post 5 thanks another participant, RLBrown, for their contribution and mentions an alternative method to solve the problem, suggesting that multiple approaches may have been discussed.

Areas of Agreement / Disagreement

There is no clear consensus on the solutions to the equation as the posts primarily express gratitude and reference solutions without detailing them. Multiple approaches appear to be acknowledged, but no specific disagreements are noted.

Contextual Notes

The discussion lacks detailed mathematical steps or assumptions that may be necessary for fully understanding the proposed solutions. The nature of the solutions and methods referenced remains unspecified.

Who May Find This Useful

Participants interested in problem-solving techniques for polynomial equations or those looking for alternative methods in mathematical reasoning may find this discussion relevant.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all real solutions of the equation $(x+2011)(x+2012)(x+2013)(x+2014)+1=0$
 
Mathematics news on Phys.org
anemone said:
Find all real solutions of the equation $(x+2011)(x+2012)(x+2013)(x+2014)+1=0$

Let $x+2013=t$, then the equation is:
$$(t-2)(t-1)t(t+1)+1=0 \Rightarrow t^4-2t^3-2t^2+2t+1=0$$
$$\Rightarrow t^4+t^2+1-2t^3-2t^2+2t=0 \Rightarrow (t^2-t-1)^2=0 \Rightarrow t^2-t-1=0$$
The solutions to the above quadratic are:
$$t=\frac{1+\sqrt{5}}{2},\frac{1-\sqrt{5}}{2}$$
$$\Rightarrow x=\frac{1+\sqrt{5}}{2}-2013,\frac{1-\sqrt{5}}{2}-2013$$
 
Thanks, Pranav for your neat solution!

My solution:

Well, it couldn't be said that it's my method, it was how I remembered how this kind of problem be tackled that I just applied the skill to this problem, so I couldn't really take the credit::)

Let $a=x+\dfrac{2014+2013+2012+2011}{4}=x+2012.5$, then the original equation becomes $(a+1.5)(a+0.5)(a-0.5)(a-1.5)+1=0$ or simply $a^4-2.5a^2+1.5625=0$ and solving it for $a^2$ we get $(a^2-1.25)^2=0$.

Hence, $a=\pm \sqrt{1.25}$ and therefore, $x=\pm \sqrt{1.25}-2012.5$, upon checking, these two solutions do indeed satisfy the original equation and we're done.
 
anemone said:
Thanks, Pranav for your neat solution!

My solution:

Well, it couldn't be said that it's my method, it was how I remembered how this kind of problem be tackled that I just applied the skill to this problem, so I couldn't really take the credit::)

Let $a=x+\dfrac{2014+2013+2012+2011}{4}=x+2012.5$, then the original equation becomes $(a+1.5)(a+0.5)(a-0.5)(a-1.5)+1=0$ or simply $a^4-2.5a^2+1.5625=0$ and solving it for $a^2$ we get $(a^2-1.25)^2=0$.

Hence, $a=\pm \sqrt{1.25}$ and therefore, $x=\pm \sqrt{1.25}-2012.5$, upon checking, these two solutions do indeed satisfy the original equation and we're done.

one can always take credit for applying skill. applying skill is a part of skillset(Clapping)
 
Golden Quadratic: $\phi \phi $-$\phi $-1 = 0

1) $\phi $-1 = 1/$\phi $
2) 1 = $\phi \phi $-$\phi $

Given: 1-2+1 = 0
($\phi \phi $-$\phi $)-2+1 = 0 From 2
($\phi $-2)($\phi $+1)+1 = 0 Factoring
($\phi $-2)(1/$\phi $)($\phi $)($\phi $+1)+1 = 0 Multiplicitive Inverse
($\phi $-2)($\phi $-1)($\phi $)($\phi $+1)+1 = 0 From 1

Let x=$\phi $-2013 where $\phi $ is either root of the Golden Quadratic
(x + 2011) (x + 2012) (x + 2013) (x + 2014)+1 = 0 QED
 
RLBrown said:
Golden Quadratic: $\phi \phi $-$\phi $-1 = 0

1) $\phi $-1 = 1/$\phi $
2) 1 = $\phi \phi $-$\phi $

Given: 1-2+1 = 0
($\phi \phi $-$\phi $)-2+1 = 0 From 2
($\phi $-2)($\phi $+1)+1 = 0 Factoring
($\phi $-2)(1/$\phi $)($\phi $)($\phi $+1)+1 = 0 Multiplicitive Inverse
($\phi $-2)($\phi $-1)($\phi $)($\phi $+1)+1 = 0 From 1

Let x=$\phi $-2013 where $\phi $ is either root of the Golden Quadratic
(x + 2011) (x + 2012) (x + 2013) (x + 2014)+1 = 0 QED

Thanks, RLBrown for participating! You know, I wouldn't have thought to approach it this way and thank you again for showing us the other good method to solve this challenge problem. :)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K