Solving $(x+2011)(x+2012)(x+2013)(x+2014)+1=0$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The equation $(x+2011)(x+2012)(x+2013)(x+2014)+1=0$ has been discussed with a focus on finding all real solutions. Participants in the forum highlighted various methods to approach the problem, with specific acknowledgment of Pranav's effective solution. The discussion emphasizes the importance of collaborative problem-solving and the application of mathematical skills in tackling complex equations.

PREREQUISITES
  • Understanding of polynomial equations
  • Familiarity with factorization techniques
  • Knowledge of real number properties
  • Basic algebraic manipulation skills
NEXT STEPS
  • Explore advanced polynomial root-finding techniques
  • Study the application of the Rational Root Theorem
  • Learn about numerical methods for solving equations
  • Investigate the use of graphing tools for visualizing polynomial functions
USEFUL FOR

Mathematicians, students studying algebra, educators teaching polynomial equations, and anyone interested in problem-solving techniques in mathematics.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all real solutions of the equation $(x+2011)(x+2012)(x+2013)(x+2014)+1=0$
 
Mathematics news on Phys.org
anemone said:
Find all real solutions of the equation $(x+2011)(x+2012)(x+2013)(x+2014)+1=0$

Let $x+2013=t$, then the equation is:
$$(t-2)(t-1)t(t+1)+1=0 \Rightarrow t^4-2t^3-2t^2+2t+1=0$$
$$\Rightarrow t^4+t^2+1-2t^3-2t^2+2t=0 \Rightarrow (t^2-t-1)^2=0 \Rightarrow t^2-t-1=0$$
The solutions to the above quadratic are:
$$t=\frac{1+\sqrt{5}}{2},\frac{1-\sqrt{5}}{2}$$
$$\Rightarrow x=\frac{1+\sqrt{5}}{2}-2013,\frac{1-\sqrt{5}}{2}-2013$$
 
Thanks, Pranav for your neat solution!

My solution:

Well, it couldn't be said that it's my method, it was how I remembered how this kind of problem be tackled that I just applied the skill to this problem, so I couldn't really take the credit::)

Let $a=x+\dfrac{2014+2013+2012+2011}{4}=x+2012.5$, then the original equation becomes $(a+1.5)(a+0.5)(a-0.5)(a-1.5)+1=0$ or simply $a^4-2.5a^2+1.5625=0$ and solving it for $a^2$ we get $(a^2-1.25)^2=0$.

Hence, $a=\pm \sqrt{1.25}$ and therefore, $x=\pm \sqrt{1.25}-2012.5$, upon checking, these two solutions do indeed satisfy the original equation and we're done.
 
anemone said:
Thanks, Pranav for your neat solution!

My solution:

Well, it couldn't be said that it's my method, it was how I remembered how this kind of problem be tackled that I just applied the skill to this problem, so I couldn't really take the credit::)

Let $a=x+\dfrac{2014+2013+2012+2011}{4}=x+2012.5$, then the original equation becomes $(a+1.5)(a+0.5)(a-0.5)(a-1.5)+1=0$ or simply $a^4-2.5a^2+1.5625=0$ and solving it for $a^2$ we get $(a^2-1.25)^2=0$.

Hence, $a=\pm \sqrt{1.25}$ and therefore, $x=\pm \sqrt{1.25}-2012.5$, upon checking, these two solutions do indeed satisfy the original equation and we're done.

one can always take credit for applying skill. applying skill is a part of skillset(Clapping)
 
Golden Quadratic: $\phi \phi $-$\phi $-1 = 0

1) $\phi $-1 = 1/$\phi $
2) 1 = $\phi \phi $-$\phi $

Given: 1-2+1 = 0
($\phi \phi $-$\phi $)-2+1 = 0 From 2
($\phi $-2)($\phi $+1)+1 = 0 Factoring
($\phi $-2)(1/$\phi $)($\phi $)($\phi $+1)+1 = 0 Multiplicitive Inverse
($\phi $-2)($\phi $-1)($\phi $)($\phi $+1)+1 = 0 From 1

Let x=$\phi $-2013 where $\phi $ is either root of the Golden Quadratic
(x + 2011) (x + 2012) (x + 2013) (x + 2014)+1 = 0 QED
 
RLBrown said:
Golden Quadratic: $\phi \phi $-$\phi $-1 = 0

1) $\phi $-1 = 1/$\phi $
2) 1 = $\phi \phi $-$\phi $

Given: 1-2+1 = 0
($\phi \phi $-$\phi $)-2+1 = 0 From 2
($\phi $-2)($\phi $+1)+1 = 0 Factoring
($\phi $-2)(1/$\phi $)($\phi $)($\phi $+1)+1 = 0 Multiplicitive Inverse
($\phi $-2)($\phi $-1)($\phi $)($\phi $+1)+1 = 0 From 1

Let x=$\phi $-2013 where $\phi $ is either root of the Golden Quadratic
(x + 2011) (x + 2012) (x + 2013) (x + 2014)+1 = 0 QED

Thanks, RLBrown for participating! You know, I wouldn't have thought to approach it this way and thank you again for showing us the other good method to solve this challenge problem. :)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K