MHB Solving $z^4=-1$ with a Complex Number

AI Thread Summary
To solve the equation \( z^4 = -1 \) for complex numbers, the approach involves expressing the equation in polar form. The equation can be rewritten as \( r^4 e^{4i\theta} = e^{i(\pi + 2\pi n)} \), leading to \( r = 1 \) and \( \theta = \frac{\pi}{4} + \frac{\pi n}{2} \) for \( n \in \mathbb{Z} \). Evaluating \( \theta \) within the range \( (-\pi, \pi] \) yields the solutions. Additionally, the discussion touches on using Euler's identity and factoring techniques to find roots, emphasizing the conversion to polar coordinates for simplification. The conversation highlights various methods to arrive at the solution effectively.
Dustinsfl
Messages
2,217
Reaction score
5
For some odd reason, I can't think right now. How do I solve $z^4 = -1$ where z is a complex number?
 
Mathematics news on Phys.org
dwsmith said:
For some odd reason, I can't think right now. How do I solve $z^4 = -1$ where z is a complex number?

There's a few ways. The easiest is IMO this way...

\[ \displaystyle \begin{align*} z^4 &= -1 \\ \left(r\,e^{i\theta}\right)^4 &= e^{i\left(\pi + 2\pi n\right)}\textrm{ where }n \in \mathbf{Z} \\ r^4e^{4i\theta} &= 1e^{i\left(\pi + 2\pi n\right)} \\ r^4 = 1 \textrm{ and } 4\theta &= \pi + 2\pi n \\ r = 1 \textrm{ and } \theta &= \frac{\pi}{4} + \frac{\pi n}{2} \end{align*} \]

Now evaluate the values for $\displaystyle \theta $ which are in the region $\displaystyle \theta \in (-\pi, \pi]$.
 
Last edited:
Prove It said:
There's a few ways. The easiest is IMO this way...

\[ \displaystyle \begin{align*} z^4 &= -1 \\ z^4 - 1 &= 0 \end{align*} \]
Are you sure? :p
 
Sherlock said:
Are you sure? :p

Oops, I meant +1 haha, editing :P
 
If we use Euler's identity we can easily find that $\displaystyle z^n+1 = \prod_{k=0}^{n-1}\left(z-e^{i\left(\dfrac{\pi}{n}+\dfrac{2\pi}{n} k\right)}\right).$

---------- Post added at 00:31 ---------- Previous post was at 00:19 ----------

Prove It said:
Oops, I meant +1 haha, editing :P
I think the idea of your earlier solution does work, though.

\begin{aligned}z^4+1 & = z^4-i^2 \\& = (z^2-i)(z^2+i) \\& = (z-\sqrt{i})(z+\sqrt{i})(z^2-i^3) \\& = (z-\sqrt{i})(z+\sqrt{i})(z-i^{3/2})(z+i^{3/2}). \end{aligned}
 
Sherlock said:
If we use Euler's identity we can easily find that $\displaystyle z^n+1 = \prod_{k=0}^{n-1}\left(z-e^{i\left(\dfrac{\pi}{n}+\dfrac{2\pi}{n} k\right)}\right).$

---------- Post added at 00:31 ---------- Previous post was at 00:19 ----------

I think the idea of your earlier solution does work, though.

\begin{aligned}z^4+1 & = z^4-i^2 \\& = (z^2-i)(z^2+i) \\& = (z-\sqrt{i})(z+\sqrt{i})(z^2-i^3) \\& = (z-\sqrt{i})(z+\sqrt{i})(z-i^{3/2})(z+i^{3/2}). \end{aligned}

True, but to evaluate $\displaystyle \sqrt{i}$ and $\displaystyle i^{\frac{3}{2}}$ requires converting to polars, so it's easier to convert right at the start :)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

3
Replies
108
Views
10K
Replies
1
Views
1K
Replies
2
Views
1K
Replies
7
Views
3K
Replies
10
Views
865
Back
Top