Some Flat Equation Prime Number Aproximations

  • Context: Graduate 
  • Thread starter Thread starter qpwimblik
  • Start date Start date
  • Tags Tags
    Flat Prime
Click For Summary
SUMMARY

This discussion focuses on advanced mathematical approximations for prime number estimation, specifically Pn and Pi(n). The formulas presented utilize logarithmic functions and constants such as ln(2) and ln(3) to derive estimates. The author expresses a commitment to refining these approximations, aiming for improved accuracy and functionality. The discussion also highlights the potential for numerical results and graphical representations to validate the approximations.

PREREQUISITES
  • Understanding of logarithmic functions and their properties
  • Familiarity with prime number theory and sequences (A002260, A004736)
  • Basic knowledge of mathematical approximations and error bounds
  • Experience with mathematical software for computation and visualization
NEXT STEPS
  • Research advanced techniques in prime number approximation
  • Explore the triangle number formula and its applications in number theory
  • Learn about numerical methods for validating mathematical conjectures
  • Investigate graphical representation tools for mathematical data analysis
USEFUL FOR

Mathematicians, data scientists, and anyone interested in prime number theory and mathematical modeling will benefit from this discussion.

qpwimblik
Messages
36
Reaction score
0
for estimating Pn

1/2*(8-8.7*n-n^2+1/2*(2*abs(ln(n)/ln(3)+ln(ln(n)/ln(2))/ln(2))+abs((ln(ln(3))-ln(ln(n))+2*n*ln(ln(n)/ln(2))+sqrt(((8*ln(3)*ln(n))/ln(2)-ln(ln(2))+ln(ln(n)))*ln(ln(n)/ln(2))))/ln(ln(n)/ln(2))))*(-1+abs(ln(n)/ln(3)+ln(ln(n)/ln(2))/ln(2))+abs(-(1/2)+n+sqrt(((8*ln(3)*ln(n))/ln(2)-ln(ln(2))+ln(ln(n)))*ln(ln(n)/ln(2)))/(2*ln(ln(n)/ln(2))))))

or

1/2*(3-(8+ln(2.3))*n-n^2+1/2*(-1+abs(-(1/2)+n+sqrt(ln(ln(n)/ln(2))*(-ln(ln(2))+ln(ln(n))+(8*ln(3)*ln((n*ln(8*n))/ln(n)))/ln(2)))/(2*ln(ln((n*ln(8*n))/ln(n))/ln(2))))+abs(ln(n)/ln(3)+ln(ln((n*ln(8*n))/ln(n))/ln(2))/ln(2)))*(2*abs(ln((n*ln(8*n))/ln(n))/ln(3)+ln(ln((n*ln(8*n))/ln(n))/ln(2))/ln(2))+abs(1/ln(ln(n)/ln(2))*(ln(ln(3))-ln(ln(n))+2*n*ln(ln(n)/ln(2))+sqrt(((8*ln(3)*ln(n))/ln(2)-ln(ln(2))+ln(ln((n*ln(8*n))/ln(n))))*ln(ln((n*ln(8*n))/ln(n))/ln(2)))))))


And for approximating the Pi(n)

1/(3*abs(ln(n)))*((2-n*(n-ln(n))+(-1+abs(n)+abs(ln(ln(n)))/ln(pi))*(abs(n)+abs(ln(ln(n)))/ln(pi))-(2*ln(ln(n)))/ln(pi))/(1+abs(ln(n)))+1/(abs(ln(n))+ln(2))*ln(2)^2*(2-n*(n-ln(n)/ln(2))+(-1+abs(n)+abs(ln(ln(n)))/ln(pi))*(abs(n)+abs(ln(ln(n)))/ln(pi))-(2*ln(ln(n)))/ln(pi))+1/(abs(ln(n))+ln(3))*ln(3)^2*(2-n*(n-ln(n)/ln(3))+(-1+abs(n)+abs(ln(ln(n)))/ln(pi))*(abs(n)+abs(ln(ln(n)))/ln(pi))-(2*ln(ln(n)))/ln(pi)))


I do apologise If you want more advanced formula's with Summation's and or Factorial's and or big O notation but I don't understand that stuff very well.
 
Physics news on Phys.org
we are more interested to know how you derived those equations.
 
Well I was investigating counting with A002260 and A004736 and tried using The triangle number formula to balance both pattern one and pattern two, the formula to which is on my website, Then I Played with the counting function with some other functions like log and then simplified with the help of the computer my best effort at predicting Pn and tweaked around with that until well what you see so far as my effort.

I still have my work cut out for me to see how accurate I can get and am working towards a few tweaks with the addition of some extra functionality including making the smooth curve reverberate. All still as a flat equation.

The pi(x) approximation is my first attempt (roughly 2 hours work) at that problem so it should be quite easy for me to Improve it's accuracy and give it the Pn weaving ability that the far more worked on Pn estimates have.
 
Last edited:
My Pn estimates seem weave round Pn with an upper bound of 0.075 n of Pn and a lower bound of 0.5 n of Pn all at an ever slower speed exponentially relative to Pn, which Means with a slight modification to the formula I can get with in roughly 0.28 n of Pn for any number no matter how large providing this conjecture works to infinity.
 
I would suggest you post some numerical results and/or graphs to let people get a feel for how good your approximations are.
 
on it way I should have that for you soon.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
1K
Replies
1
Views
4K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K