Some information on this topic?

  • Thread starter Thread starter cwn72
  • Start date Start date
  • Tags Tags
    Information Topic
Click For Summary
SUMMARY

The discussion focuses on the mathematical concept of compound growth and decay, particularly in the context of trading scenarios involving stocks, options, and futures. It highlights that when equal percentages of gains and losses are applied, the overall balance tends to approach zero over time due to the multiplicative effects of winning and losing trades. The analysis uses a 50%-50% win-loss probability model, demonstrating that the final balance approaches zero as the number of trades increases, due to the properties of multiplication and limits.

PREREQUISITES
  • Understanding of compound growth and decay in financial contexts
  • Basic probability theory, specifically concepts of win-loss ratios
  • Familiarity with limits in mathematical analysis
  • Knowledge of commutative and associative properties of multiplication
NEXT STEPS
  • Research the mathematical foundations of compound interest and decay formulas
  • Study the implications of probability theory in financial decision-making
  • Explore the concept of expected value in trading strategies
  • Learn about risk management techniques in trading environments
USEFUL FOR

This discussion is beneficial for traders, financial analysts, mathematicians, and anyone interested in understanding the mathematical principles behind trading outcomes and risk management strategies.

cwn72
Messages
1
Reaction score
0
Hello, I have been searching around for a topic of math that I am not familiar with. I'm hoping somebody can point me in the right direction.

This has to do with Compound growth and decay when the two are combined. This occurs in trading(ie stocks,options,futures,etc.) And I am hoping I can find an accurate formula that describes the nature of this idea.

The main Idea is that when compound growth and decay are added together, they tend to go towards zero. Ex)

Starting with $100, risk is 10% and reward is 10%. The chance of a win is 50%, chance of a loss is 50%.

On the first trade we win:
$100 + $10(10%) = $110.

On the next trade we lose:
$110 - $11(10%) = $99.

As you can see, one win of 10% and one loss of 10% does not result in the starting balance, but tends to get closer to zero. Also, the order of these wins/losses is not important.

I have not been able to find a formula that explains this phenomena, or even what this concept is called.
 
Mathematics news on Phys.org
cwn72 said:
Hello, I have been searching around for a topic of math that I am not familiar with. I'm hoping somebody can point me in the right direction.

This has to do with Compound growth and decay when the two are combined. This occurs in trading(ie stocks,options,futures,etc.) And I am hoping I can find an accurate formula that describes the nature of this idea.

The main Idea is that when compound growth and decay are added together, they tend to go towards zero. Ex)

Starting with $100, risk is 10% and reward is 10%. The chance of a win is 50%, chance of a loss is 50%.

On the first trade we win:
$100 + $10(10%) = $110.

On the next trade we lose:
$110 - $11(10%) = $99.

As you can see, one win of 10% and one loss of 10% does not result in the starting balance, but tends to get closer to zero. Also, the order of these wins/losses is not important.

I have not been able to find a formula that explains this phenomena, or even what this concept is called.


I don't know how this concept is called; it sounds like something in economics or financial mathematics to me. Having said that, I believe your problem is a purely probabilistic one. Here is an explanation:

The chances of winning or losing is 50%-50%. If you win, your new balance is 110% of your previous balance. If you lose, your new balance is 90% of your previous balance.

Consider the following combination as an example: 1.win, 2.lose, 3.win, 4.win. Then your new balance is 110%*90%*110%*110%*(initial balance). Thus you can see why the order does not matter, for suppose the order is changed, you would still have the same balance because multiplication is commutative and associative.

Now to see why in the end your final balance would tend towards zero, let the number of trades be
T and let the number of wins be W. Since the chances of winning or losing is 50%-50%, in the
limit T→∞ we have W/T = 0.5 . Thus, in the limit T→∞ the number of wins and losses will become equal. Therefore, to calculate your new balance, each time you multiply your initial balance by 110%, you would also have to multiply the new balance by 90% (and you would have to do that
T/2 times):

new balance = lim (110%*90%)T/2*(initial balance)
T→∞​
= lim 0.99T/2 * (initial balance)
T→∞
= 0,
as 0.99 < 1.

Thus, you can see why your balance will eventually tend to zero.

To summarize, we've explained (i) why the order of win/loss do not make a difference, and (ii) why
your balance will eventually tend to $0. We made use of the commutative and associative laws of multiplication, simple probability theory, and limits.

I hope this helps.
 
I don't know what "finance experts" call it, but I don't think it is anything more complicated than ##(1+x)(1-x) = 1 - x^2##.

There is a old classic "are you financially clueless" question that says "if you are gambling and you win 40% and then lose 30%, have you made a profit?" The answer is "no". 1.4 x 0.7 = 0.98.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
23
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K