dshield55 said:
I'm wondering if the sound of two identical horns positioned perfectly in front of each other and emitting the same sounds/pressure will cancel each other out no matter what where the only variable changing is how far apart the horns are from each other.
Maybe an example would be two clarinets facing each other and positioned at 2 inches apart versus 5 inches apart. Does it have to be an exact distance apart for the waves to hit each other perfectly out of phase and cancel?
What you want is two waves that are out of phase by 180 degrees. If they have the same maxima and minima at the same time at the source, then they will cancel out at some point where one wave travels half a wavelength farther than the other, or 1-1/2, or 2-1/2, or 3-1/2...
If you are equidistant from the two clarinets, then the sound travels the same distance and if the waves started out in phase, they'll still be in phase and will add up.
Let's do some numbers. Let's use the pitch E4, E above middle C, which has a frequency of about 330 Hz. And let's say the speed of sound is, oh, 330 m/s. So the wavelength is ##\lambda = v/f## = 1 m. Let's say the two sources are 2 m apart and I'm standing in the middle, 1 m from each one. Then the waves will have their maxima and minima at the same time, and they'll add up constructively.
Now let's say I move 25 cm to the left. I'm now 0.75 m from the left source and 1.25 m from the right source. The wave from the right source is now traveling 0.5 m farther, half a wavelength. So it is in a minimum when the wave from the left is at a maximum, and vice versa. They cancel out.
dshield55 said:
What I'm envisioning is that if the waves are coming from the same direction, they'll eventually hit an equal set of sound waves coming from the opposite direction that's out of phase. Is this wrong?
The analysis is done in terms of path differences. You can arrange it so that in some places in space one wave will travel 1/2 a wavelength farther than the other wave so they'll be out of phase. But there will inevitably be other places where they add up constructively. It's unavoidable. If the two sources are not in the same location, which they can't be, then some points will be closer to one source, some will be closer to the other source, and some will be equidistant.
And then you have to worry about different frequencies. In my example I identified a point which is a null at 330 Hz. But it wouldn't be a null at 400 Hz since the wavelength is different.