Space of continuous functions C[a,b]

ninty
Messages
12
Reaction score
0
We know that dim(C[a,b]) is infinte. Indeed it cannot be finite since it contains the set of all polynomials.
Is the dimension of a Hamel basis for it countable or uncountable?

I guess if we put a norm on it to make a Banach space, we could use Baire's to imply uncountable.
I am however interested in a proof that does not rely on equipping the vector space with a norm.

If it's too long winded but available somewhere else(books, articles) kindly point it out to me and I'll read it.
 
Physics news on Phys.org
Hamel bases are always finite or uncountable.
 
JSuarez said:
Hamel bases are always finite or uncountable.

That's true if your space is an infinite dimensional normed vector space which is complete, and that result follows from Baire's category theorem AFAIK. So you haven't really strayed from the original proof.

A counting argument might suffice. Suppose there was a countable basis. There are only continuum many choices of finite linear combinations from these, but the cardinality of the vector space is larger than that
 
I used instead the fact that exponentials are continuous
Then E:={e^ax : a real } is a subset of C[a,b]

It's clear that for finite n, {e^ix : i in N} is linearly independent.
I'm fudging, but that would seem to imply that E is also linearly independent, since every finite subset is linearly independent.
Hence cardinality of a basis is at least |E| = continuum
 
Office_Shredder said:
A counting argument might suffice. Suppose there was a countable basis. There are only continuum many choices of finite linear combinations from these, but the cardinality of the vector space is larger than that

False: the cardinality of C[a,b] is the cardinality of the continuum. (Each function in C[a,b] is uniquely determined by its values on the rational numbers in [a,b].)

But yes, you could show that E = {eax | a real} is an uncountable linearly independent subset of C[a,b], to show that C[a,b] has no countable Hamel basis.

JSuarez said:
Hamel bases are always finite or uncountable.

The space of all real sequences which are eventually zero has a countable Hamel basis.
 
Last edited:
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top