fresh_42 said:
So the criterion could be that for ##\chi_\mathbb{C}(A)=\prod (x-\lambda_k)^{n_k}## we require ##\prod n_k \neq 1## which looks Zariski open and dense, and thus no variety!?
I think ##\chi## usually refers to characteristic polynomial, not minimal polynomial. Anyway, this set is way too small to be Zariski open- most matrices are diagonalizable. In particular, the space of matrices with distinct eigenvalues is disjoint from our space and is Zariski open (since the complement is the zero set of the discriminant of the characteristic polynomial), but two nonempty Zariski open sets in ##M_{n\times n}=\mathbb{R}^{n^2}## cannot be disjoint.
Let's think about the ##2\times 2## case more: To fix notation, let ##X## be the set of ##2\times 2## matrices which have a repeated eigenvalue, and let ##Y\subset X## be the subspace of non-diagonalizable (defective) matrices. Note that ##Y=X-\{cI:c\in\mathbb{R}\}##. This is because the only diagonalizable ##2\times 2## matrix with repeated eigenvalue ##\lambda## is ##\lambda I##. In particular, ##Y## is a open subset (even Zariski open) of ##X##.
Let ##A=\begin{pmatrix}a & b\\c & d\end{pmatrix}## and ##\chi_A(\lambda)=\lambda^2-(a+d)\lambda+(ad-bc)## be its characteristic polynomial. Then ##X## is the zero set of ##\text{disc}(\chi_A)=(a+d)^2-4(ad-bc)=(a-d)^2+4bc=0##.
Consider the map ##F(A)=(a-d)^2+4bc##. Note that ##\nabla F=(2(a-d),4c,4b,-2(a-d))## is zero if and only if ##a=d## and ##b=c=0##, i.e. ##A## is a scalar matrix. So ##X=F^{-1}(0)## is a manifold away from the scalar matrices. Since ##Y## is an open subset of ##X## not containing the scalar matrices, it should be a manifold.
I think the only part of this argument that doesn't generalize easily to higher dimensions is explicitly computing ##F## and ##\nabla F##.