Spacetime Curvature: Which Tensor Gives Coordinates?

jpescarcega
Messages
9
Reaction score
0
In the Einstein Field Equations: Rμν - 1/2gμνR + Λgμν = 8πG/c^4 × Tμν, which tensor will describe the coordinates for the curvature of spacetime? The equations above describe the curvature of spacetime as it relates to mass and energy, but if I were to want to graph the curvature of spacetime, which tensor would I look to for the coordinates?
 
Physics news on Phys.org
I'm not sure what you mean by graphing the "curvature" of spacetime. However, every term in the field equations on the left hand side is the metric, or some form of derivative of the metric. In essence, every piece of geometric data is in the metric, but the Ricci tensor tells you directly about the curvature of the space in the sense that it is 0 if the space is "flat" (necessary but not sufficient, the Riemann tensor must also be 0). But you need the metric to calculate it, regardless.
 
cpsinkule said:
I'm not sure what you mean by graphing the "curvature" of spacetime. However, every term in the field equations on the left hand side is the metric, or some form of derivative of the metric. In essence, every piece of geometric data is in the metric, but the Ricci tensor tells you directly about the curvature of the space in the sense that it is 0 if the space is "flat" (necessary but not sufficient, the Riemann tensor must also be 0). But you need the metric to calculate it, regardless.
Oh ok that makes sense that the metric would be able to describe all geometric properties. Thank you. But, what I'm still wondering is whether or not the Ricci tensor is the right one for graphing the curve. What I mean by "graphing the curvature of spacetime", is plotting points of stressed spacetime. You've read about spacetime being like a trampoline, where when you place a bowling ball on top of it, it bends. Similarly, I'm sure you've seen qualitative interpretations of bent spacetime, which seem to look like parabolas, (like this). To be specific, what I want to do is strip the time component of the curvature of space, and strip the z component of the curvature of space and have a 2 dimensional curve (much like a parabola). But which tensor will take me to the information necessary for those cartesian coordinates?
 
jpescarcega said:
In the Einstein Field Equations: Rμν - 1/2gμνR + Λgμν = 8πG/c^4 × Tμν, which tensor will describe the coordinates for the curvature of spacetime? The equations above describe the curvature of spacetime as it relates to mass and energy, but if I were to want to graph the curvature of spacetime, which tensor would I look to for the coordinates?

Suppose you want to plot the field around a spherical source. The solution of the metric is known but the Ricci tensor is zero, so that is no use. I would say that you should plot the tidal effects which are got by projecting the Riemann tensor into the spacetime of a stationary observer or a freely falling observer. The result of this is three forces which act in the radial direction and in the two directions orthogonal to the radius.

According to Prof J Baez, this captures the meaning of the Einstein field equations. See http://math.ucr.edu/home/baez/einstein/
 
  • Like
Likes jpescarcega
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
Back
Top