Spacetime Interval & Metric: Equivalent?

jmatt
Messages
23
Reaction score
1
This may seem an odd question but it will clear something up for me. Are "The spacetime interval is invariant." and the "The spacetime metric is a tensor." exactly equivalent statements? Does one imply more or less information than the other?

Thanks!
 
Physics news on Phys.org
They aren't exactly equivalent, but they are closely related. The space time interval is ##ds^2=g_{ab}dx^a dx^b##. Because the metric ##g_{ab}## is a tensor, contracting it with (infinitesimal) vectors ##dx^{a}## will yield an invariant scalar ##ds^2##.
 
Matterwave said:
They aren't exactly equivalent, but they are closely related. The space time interval is ##ds^2=g_{ab}dx^a dx^b##. Because the metric ##g_{ab}## is a tensor, contracting it with (infinitesimal) vectors ##dx^{a}## will yield an invariant scalar ##ds^2##.
Thanks! A little confused why you referred to ##ds^2## as a scalar. Isn't it a four-vector?
 
jmatt said:
Thanks! A little confused why you referred to ##ds^2## as a scalar. Isn't it a four-vector?
Nope. It's the scalar product of (differential) four-vectors.
 
jmatt said:
Thanks! A little confused why you referred to ##ds^2## as a scalar. Isn't it a four-vector?

Why would it be a 4 vector? What are the 4 components that you are thinking of? It is a scalar because it's just 1 single number, which does not change under an arbitrary Lorentz transformation.
 
Got it now. Thanks very much.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Back
Top