"Special" Calculus and Analysis book

AI Thread Summary
The discussion centers on finding a suitable textbook for a specialized mathematics course, referred to as Analysis II, which combines rigorous theoretical analysis with practical applications. The course covers a range of topics including topology in R and Rn, functions of multiple variables, differential calculus, optimization of multivariable functions, and double and triple integrals. Participants suggest looking for books that provide deep insights similar to Kleppner and Kolenkow's work in mechanics. Recommendations include specific titles for various topics, with a focus on texts that balance mathematical formalism with practical applications relevant to physics and engineering. Notable suggestions include works by Edwards and Fleming, which are considered valuable resources for understanding integrals and other advanced calculus concepts.
paalfis
Messages
69
Reaction score
2
I used 'special' for the title, because the book I need is for a particular course that has a very good reputation, but it is quite unique in the way its go through mathematics, it does a very deep analysis of theorems and demonstrations, but also very practical; it would be the equivalent in my country to a honor course for majoring in Math and Physics in America. I will denote all the topics that are covered in the course, and I hope you can recommend the book you think is the best, for each or all of the topics. (I am hoping I can find something like the book from Klepnner and Kolenkow is to Mechanics, but for this topics):

Before, I must said that the final goal of this course (called Analysis II) is to be able to show proves and demonstrations for particular cases and examples of all of the topics named below.

The topics:
1-Topology in R and Rn : Completeness of R, Distance, open and closed disks disks. Interior points. Interior of a set. Open sets, closed sets, bounded sets. Limits in Rn
2-Functions of Rn in Rk ,( n, k = 1, 2, ... ): Graphing. Domain of definition. Curves and level surfaces. Limit functions in Rn Rk. Limit along lines and curves. Continuous functions. Composition of continuous functions. Properties of continuous functions.
3-Differential calculus with multiple variables:Partial derivatives. Linear approximation. Differential of a function. Jacobian matrix. Tangent plane to the graph of a function. Chain Rule. General theorems of the inverse function and implicit function. Scalar product in Rn. Equation of plane orthogonal to a vector. Directional derivatives. Gradient. Relationship between the level surfaces and the direction of maximum growth. Plane tangent to a level surface. Mean value theorem in several variables. Higher derivatives. Polynomial approximation order 2. Hessian matrix (or Hessian) of a function.
4-Extremes of multiple variable functions : Critic points and extremes of a function. Quadratic forms, associated matrix. Analysis of critical points in several variables from the Hessian: maximum, minimum, saddle points. Ligated ends: ends of a function over a set given by an equation G = 0 . Condition for a point to be critical . Lagrange multipliers.
5-Double and Triple Integers: Review: definite integral, Riemann sums, Fundamental Theorem of Calculus, Barrow rule. Improper integrals: definition, properties, convergence criteria, absolute convergence. Application: convergence of series. The double integral over rectangles. The double integral over more general regions. Changing the order of integration: Fubini Theorem. The triple integral. The Change of variables theorem. Applications of double and triple integrals.
 
Physics news on Phys.org
Double and Triple Integers, huh? That must be a 'special calculus'.
 
SteamKing said:
Double and Triple Integers, huh? That must be a 'special calculus'.

Steamking, I hope that is not sarcasm, it would be kind of rude from your part. By special I meant that the focus of the course require one to have the formality of a math major and the "practical view" of a physicist or even an engineer.
 
It was just a typing mistake from google translate.. Of course I meant integrals
 
For the following four books, has anyone used them in a course or for self study? Compiler Construction Principles and Practice 1st Edition by Kenneth C Louden Programming Languages Principles and Practices 3rd Edition by Kenneth C Louden, and Kenneth A Lambert Programming Languages 2nd Edition by Allen B Tucker, Robert E Noonan Concepts of Programming Languages 9th Edition by Robert W Sebesta If yes to either, can you share your opinions about your personal experience using them. I...
Hi, I have notice that Ashcroft, Mermin and Wei worked at a revised edition of the original solid state physics book (here). The book, however, seems to be never available. I have also read that the reason is related to some disputes related to copyright. Do you have any further information about it? Did you have the opportunity to get your hands on this revised edition? I am really curious about it, also considering that I am planning to buy the book in the near future... Thanks!
I’ve heard that in some countries (for example, Argentina), the curriculum is structured differently from the typical American program. In the U.S., students usually take a general physics course first, then move on to a textbook like Griffiths, and only encounter Jackson at the graduate level. In contrast, in those countries students go through a general physics course (such as Resnick-Halliday) and then proceed directly to Jackson. If the slower, more gradual approach is considered...

Similar threads

Replies
10
Views
3K
Replies
3
Views
1K
Replies
12
Views
3K
Replies
10
Views
5K
Replies
6
Views
2K
Replies
24
Views
4K
Replies
16
Views
10K
Replies
5
Views
1K
Back
Top