Special relativity on a circle

Tac-Tics
Messages
816
Reaction score
7
I thought of an interesting paradox on my way home today.

Suppose you have one-dimensional, finite universe without boundary. A circle.

Special relativity seems to fail on this small world.

Take two objects in relative motion. As they pass by each other, they synch their clocks. Stop their clocks when they pass around a second time (after "the other" goes a full cycle around the circle).

What do their clocks say?

According to SR, the one in motion should have the slowed clock. On a flat world, this isn't a problem, because one or both has to accelerate before they can reconvene. But on a circular world, they will eventually meet again without ever leaving their frame.

So does SR not work in such a world? Or does it generalizer in a less-than-obvious way? (Or maybe I just missed something subtle).
 
Physics news on Phys.org
See the thread Twin paradox in a closed universe. My post #15 from that thread:

GR allows for arbitrary topologies, so it is possible to have a flat spacetime where space is nevertheless closed, a bit like the video game "Asteroids" where if you disappear off the top part of the screen you'll reappear on the bottom, and if you disappear off the right side you'll reappear on the left (technically this corresponds to the topology of a torus--see this page). In any small region of this spacetime, the laws of physics are exactly as they are in SR (with no locally preferred frames), but in a global sense there will be a preferred pseudo-inertial frame (by 'pseudo-inertial frame' I mean a global coordinate system that in any local region looks just like an inertial coordinate system in SR). This will be the frame where if you draw lines of simultaneity from a given point in spacetime, the lines will wrap around the spacetime in such a way that they return to that same point, as opposed to wrapping around it in a "slanted" way like the stripes on a candy cane. In a closed universe there is also a "hall of mirrors" effect where you see copies of every object in regular intervals in different directions, and the globally preferred frame will also have the property that observers at rest in this frame will see the nearest copies of themselves to the left and right as both being the same age, and both appear younger than the observer by an amount corresponding to their distance in the observer's frame (so if I see a copy of myself 3 light years away, his visual image will appear 3 years younger than me), while this is not true in other frames. Anyway, the answer to all twin paradox questions involving inertial twins circumnavigating the universe is that whichever of the two inertial twins is closer to being at rest in this globally preferred frame, that will be the twin who's aged more on the second of two times they cross paths.

A previous thread on this topic:

https://www.physicsforums.com/showthread.php?t=110172

And here's a paper:

http://arxiv.org/abs/gr-qc/0101014
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top