Special relativity - Transformation of angles

Aleolomorfo
Messages
70
Reaction score
4

Homework Statement


Let's have a three-particle decay of equal mass ##m##; in the CM frame the three particles have equal energy ##E## and they form angles of ##\frac{2\pi}{3}## between each other. Which is the angle between two of the three particles in the rest frame of the other one. (The z-axis is along the direction of particle 1)
a-1.jpg


Homework Equations

The Attempt at a Solution


I need a confirmation about my reasoning. I have written the 4-momentum in both frames;
$$p_1=(E,0,0,\sqrt{E^2-m^2})$$
$$p_2=(E,0,\frac{\sqrt{3}}{2}\sqrt{E^2-m^2},-\frac{1}{2}\sqrt{E^2-m^2})$$
$$p_3=(E,0,-\frac{\sqrt{3}}{2}\sqrt{E^2-m^2},-\frac{1}{2}\sqrt{E^2-m^2})$$
$$k_1=(m,0,0,0)$$
$$k_2=(E',\vec{k_2})$$
$$k_3=(E',\vec{k_3})$$
With ##|\vec{k_2}|=\sqrt{E'^2-m^2}## and ##|\vec{k_3}|=\sqrt{E'^2-m^2}##.
I have used the invariance of ##p_2^\mu p_{3\mu}=k_2^\mu k_{3\mu}## with:
$$k_2^\mu k_{3\mu}=E'^2-|\vec{k_1}||\vec{k_2}|\cos\theta=E'^2-(E'^2-m^2)cos\theta$$
$$p_2^\mu p_{3\mu}=\frac{1}{2}(3E^2-m^2)$$
I have to find the value of ##E'## with a lorentz boost of ##v=\frac{\sqrt{E^2-m^2}}{E}##: ##E'=\gamma(E-vp_z)##. With a bit of calculus I have found:
$$cos\theta=\frac{3E^4-4E^2m^2+m^4}{3E^4-2E^2m^2-m^4}$$
The result seems a bit strange and so I have the doubt that my solution is wrong, maybe I have made a calculus mistake and the reasoning is right.
 

Attachments

  • a-1.jpg
    a-1.jpg
    28.1 KB · Views: 920
Physics news on Phys.org
I think your result is correct. If you factor the numerator and denominator in your final result, it will simplify.

A nice way to get an expression for ##E'## is to set up ##p_1^{\mu} p_{2 \mu} = k_1^{\mu} k_{2 \mu}##
 
  • Like
Likes Aleolomorfo
TSny said:
I think your result is correct. If you factor the numerator and denominator in your final result, it will simplify.

A nice way to get an expression for ##E'## is to set up ##p_1^{\mu} p_{2 \mu} = k_1^{\mu} k_{2 \mu}##

Thank you very much
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top