maxverywell
- 197
- 2
Homework Statement
We have a sphere of radius a with permanent magnetization \mathbf{M}=M\hat{e}_{\mathbf{r}}.
Find the magnetic scalar potential.
Homework Equations
$$\Phi_M(\mathbf{x})=-\frac{1}{4\pi}\int_V \frac{\mathbf{\nabla}'\cdot\mathbf{M}(\mathbf{x}')}{|\mathbf{x}-\mathbf{x}'|}d^3 x' +\frac{1}{4\pi}\int_S \frac{\mathbf{n}'\cdot\mathbf{M}(\mathbf{x}')}{|\mathbf{x}-\mathbf{x}'|}da'$$
The Attempt at a Solution
$$\mathbf{\nabla}'\cdot\mathbf{M}(\mathbf{x}')=\frac{2M}{r'}$$
$$\mathbf{n}'\cdot\mathbf{M}(\mathbf{x}')=M$$
$$\Phi_M(\mathbf{x})=-\frac{M}{2\pi}\int_{0}^{a} r'dr'\int\int\frac{1}{|\mathbf{x}-\mathbf{x}'|}d\Omega' +\frac{Ma^2}{4\pi}\int \int\frac{1}{|\mathbf{x}-\mathbf{x}'|}d\Omega'$$
I expanded the 1/|\mathbf{x}-\mathbf{x}'| in terms of spherical harmonics (and because of the spherical symmetry we have m=0,\ell=0) and solved the integrals. What I got is:
$$\Phi_M(\mathbf{x})=-2M\int_{0}^{a}\frac{r'}{r_{>}}dr'+\frac{Ma^2}{r_{>}}$$
where r_{>}=max(r,a)
Inside the sphere we have r_{>}=a, therefore:
$$\Phi_M(r)=\frac{-2M}{a}\int_{0}^{a}r'dr'+Ma=0$$
This is constant. However the \Phi_M(r) inside the sphere has to satisfy the Poisson equation:
$$\nabla^2 \Phi_M(r)=\nabla\cdot \mathbf{M}=\frac{2M}{r}$$
This is not true for the potential that I found..
Last edited: