Spherical Capacitor with Frequency Dependent Dielectric

CopyOfA
Messages
33
Reaction score
1
This is a long post. Sorry...

1. Homework Statement


We are given a spherical capacitor with an inner conductor of radius ##a## and outer conductor of radius ##c##. The space between the conductors is half filled (##a<r<b##) with a dielectric with permittivity ##\varepsilon\left(\omega\right)## and vacuum in the region ##b<r<c##. The potential difference between the conductors is ##V\left(t \right) = \phi\left(c,t \right) - \phi\left(a,t \right) = V_{0}\cos\left(\omega t\right)##. Find the electric field and the electric flux density in the regions ##a<r<b## and ##b<r<c##. Also find the free and induced surface charge density residing on the surfaces ##r=a##, ##r=b##, and ##r=c##.

Homework Equations



This is a spherically symmetric problem, so the electric field and electric flux density will be functions of ##r## only. Since there is no free charge inside the sphere,
$$\nabla^2 \phi\left(r,t\right) = 0$$ Also,
  1. ##\mathbf{E}\left(r,t\right) = E_{r}\left(r,t\right) = -\nabla \phi##
  2. ##\mathbf{D}\left(r,t\right) = D_{r}\left(r,t\right) = \varepsilon(r,\omega)\mathbf{E}\left(r,t\right)##
The boundary conditions are:
  1. Denoting the regions as 1 (##a<r<b##) and 2 (##b<r<c##), $$\phi_{2}\left(c,t\right) - \phi_{1}\left(a,t\right) = V_{0}\cos\left(\omega t\right)$$
  2. At ##r=b##, $$\mathbf{D}_{1} = \mathbf{D}_2 \Longrightarrow \varepsilon\left(\omega\right)\nabla \phi_{1}\left(b,t\right) = \varepsilon_{0}\nabla \phi_{2}\left(b,t\right)$$ and $$\phi_{1}\left(b,t\right) = \phi_{2}\left(b,t\right)$$

The Attempt at a Solution


  1. At ##r=b##, the induced surface charge density of the dielectric is: $$\sigma_{P}\left(r=b\right) = \hat{r} \cdot \left(\mathbf{P}_1 - \mathbf{P}_2\right) = \hat{r} \cdot \mathbf{P}_1 = \hat{r} \cdot \varepsilon_{0}\chi_{1}\left(\omega\right)\mathbf{E}_1\left(b,t\right) = \left(\varepsilon\left(\omega\right) - \varepsilon_0\right)E_{r}\left(b,t\right)$$
  2. At ##r=a##, the free surface charge density is: $$ \sigma_{f}\left(a\right) = \hat{r}\cdot \mathbf{D}_{1}\left(a,t\right) = \varepsilon\left(\omega\right)E_{r}\left(a,t\right)$$
The solution to ##\nabla^2 \phi\left(r,t\right) = 0## is the Legendre polynomials, and for a sphere: $$\phi\left(r,t\right) = \begin{cases} \dfrac{-A_1}{r} + B_1 & a<r<b\\ \dfrac{-A_1}{r} + B_1 & b<r<c \end{cases}$$ Hence, in region (1), $$ E_{r,1}\left(r,t\right) = -\nabla \phi_{1} = -\dfrac{A_1}{r^2}$$ and $$D_{r,1}\left(r,t\right) = \varepsilon\left(\omega\right)E_{r,1} = -\varepsilon\left(\omega\right)\dfrac{A_1}{r^2}$$ In region (2), $$E_{r,2}\left(r,t\right) = -\dfrac{A_2}{r^2}$$ and $$D_{r,2}\left(r,t\right) = -\varepsilon_{0}\dfrac{A_2}{r^2}$$ Using boundary conditions: numer (2) yields $$-\varepsilon\left(\omega\right)\dfrac{A_1}{b^2} = -\varepsilon_{0}\dfrac{A_2}{b^2} \Longrightarrow A_{2} = \dfrac{\epsilon\left(\omega\right)}{\varepsilon_{0}}A_1$$ and $$\dfrac{-A_1}{b} + B_1 = \dfrac{-A_2}{b} + B_2\\\dfrac{-A_1}{b} + B_1= \dfrac{-1}{b}\left( \dfrac{\epsilon\left(\omega\right)}{\varepsilon_{0}}A_1\right)+ B_2\\ \dfrac{A_1}{b}\left( \dfrac{\epsilon\left(\omega\right)}{\varepsilon_{0}} - 1\right) = B_2 - B_1 $$ Using B.C. number (1) yields: $$V_0 \cos\left(\omega t\right) = \dfrac{-A_2}{c} + B_2 + \dfrac{A_1}{a} - B_1 = -\dfrac{1}{c}\left(\dfrac{\epsilon\left(\omega\right)}{\varepsilon_{0}}A_1\right) + \dfrac{A_1}{a} + \dfrac{A_1}{b}\left( \dfrac{\epsilon\left(\omega\right)}{\varepsilon_{0}} - 1\right)\\ V_{0}\cos\left(\omega t\right) = \left[\dfrac{\varepsilon\left(\omega\right)}{\varepsilon_0}\left(\dfrac{1}{b} - \dfrac{1}{c}\right) + \left(\dfrac{1}{a} - \dfrac{1}{b}\right)\right]A_1 = K_1 A_1$$
Hence $$A_1 = \dfrac{V_0}{K_1}\cos\left(\omega t\right)$$ $$ A_2 = \dfrac{\epsilon\left(\omega\right)}{\varepsilon_{0}} \dfrac{V_0}{K_1}\cos\left(\omega t\right) = \left[\dfrac{1}{b} - \dfrac{1}{c} + \dfrac{\varepsilon_0}{\varepsilon\left(\omega\right)}\left(\dfrac{1}{b} - \dfrac{1}{a}\right)\right]^{-1} V_0 \cos\left(\omega t\right) = \dfrac{V_0}{K_2}\cos\left(\omega t\right)$$
Since we need the difference $$B_2 - B_1 = \dfrac{A_1}{b}\left( \dfrac{\epsilon\left(\omega\right)}{\varepsilon_{0}} - 1\right)$$ we can choose ##B_1 = 0## and then $$B_2 = \dfrac{A_1}{b}\left( \dfrac{\epsilon\left(\omega\right)}{\varepsilon_{0}} - 1\right) = \left(\dfrac{\varepsilon\left(\omega\right)}{\varepsilon_0} - 1\right)\dfrac{V_0}{b K1}\cos\left(\omega t\right)$$
Finally, $$\phi_{1}\left(r,t\right) = -\dfrac{V_0}{K_1 r}\cos\left(\omega t\right) = \dfrac{abc\varepsilon_0}{\varepsilon\left(\omega\right)\left(ab-ac\right) + \varepsilon_{0}\left(bc-ac\right)}\dfrac{V_0}{r}\cos\left(\omega t\right)$$
and, $$\phi_{2}\left(r,t\right) = -\dfrac{V_0}{K_2}\cos\left(\omega t\right) + \left(\dfrac{\varepsilon\left(\omega\right)}{\varepsilon_0} - 1\right)\dfrac{V_0}{b K1}\cos\left(\omega t\right) \\ \phi_{2}\left(r,t\right) = \dfrac{ac\left(r\left(\epsilon\left(\omega\right) - \varepsilon_0\right) - b\varepsilon\left(\omega\right)\right)}{\varepsilon_0\left(a c - b c\right) + \varepsilon\left(\omega\right)\left(a c - a b\right)}\dfrac{V_0}{r}\cos\left(\omega t \right)$$

Using these results,
$$\begin{align*}

E_{r}\left(r,t\right) &= \begin{cases}

-\dfrac{V_0}{K r^2}\cos\left(\omega t\right) & a<r<b\\

\mbox{}\\

-\dfrac{\varepsilon\left(\omega\right)}{\varepsilon_0}\dfrac{V_0}{Kr^2}\cos\left(\omega t\right), & b<r<c

\end{cases}\\

D_{r}\left(r,t\right) &= \begin{cases}

-\varepsilon\left(\omega\right)\dfrac{V_0}{K r^2}\cos\left(\omega t\right) & a<r<b\\

\mbox{}\\

-\varepsilon\left(\omega\right)\dfrac{V_0}{Kr^2}\cos\left(\omega t\right), & b<r<c

\end{cases}

\end{align*}$$

Then using the equations for free and induced surface charge density,

$$\begin{align*}

\sigma_f\left(a\right) &= -\varepsilon\left(\omega\right)\dfrac{V_0}{K a^2}\cos\left(\omega t\right)\\

\sigma_P\left(b\right) &= \left(\varepsilon_0 - \varepsilon\left(\omega\right)\right)\dfrac{V_0}{K b^2}\cos\left(\omega t\right)

\end{align*}$$

The surface charge density at ##r=c## will be equal and opposite that at ##r=a##.Using these quantities to calculate the capacitance yields:

$$\begin{align*}

C = \dfrac{Q}{\Delta V} = \dfrac{\sigma_f A_S}{V_0 \cos\left(\omega t\right)} = \dfrac{4\pi abc \varepsilon\left(\omega\right)\varepsilon_0}{\varepsilon_{0}\left(bc -ac\right) + \varepsilon\left(\omega\right)\left(ab-ac\right)}

\end{align*}$$

My professor gave an instruction at the end of the problem saying: "To simplify notation you may introduce as an intermediate quantity the charge on the outer sphere provided you eventually give an expression for it in terms of the voltage." I don't know if I am making some wrong assumptions or why I would need this intermediate term as I already found the surface charge densities. Any suggestions?
 
Physics news on Phys.org
That approach looks longer than I would expect.
I would follow the hint of the professor, as such a charge variable allows to calculate all variables step by step instead of getting huge systems of equations. You do not need it, but it makes the solution easier.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top