Massive spin-1 particles are have 3 distinct nonzero eigenvalues and 3 respective eigenstates. These eigenstates correspond to 3 spin states in x, y, z spatial directions. On rotations they transform into each other as vectors. That's exactly why they are called vector particles. More formally, each of these states corresponds to a l=1 spherical harmonics.
When the mass of a spin-1 particle reaches zero, one of its eigenvalues also goes to zero. So there are only 2 nonzero eigenvalue-eigenstate pairs. These 2 eigenstates correspond to 2 polarization states. They transform into each other when rotated 90-degrees over the axis of motion.
As for spin-2 particles: when they are massive, they have 5 distinct nonzero eigenvalues and 5 eigenstates. The eigenstates may be arranged into a symmetric rank-2 tensor, that's why they are called tensor particles. Spin of such particle can described by an ellipsoid. Formally, they correspond to l=2 spherical harmonics.
When the mass of a spin-2 particle reaches zero (as in the case of graviton), one of the eigenvalues goes to zero and 4 other go close to each other pairwise. In the end there are only 2 distinct nonzero eigenvalues. One eigenvalue is 0 and 2 other are degenerate (in particular, they are double). The 2 eigenstates transform into each other when rotated 45 degrees over the axis of motion.
Now forgive me, but I never really understood spinors and I don't know how their eigenstates behave when going to 0 mass.