hokhani said:
According to your statements I guess we can not find directly that the state with ##J=3,m_j=0## is forbidden and we are forced to take help of the ##L, S## form to confirm it. Am I right?
Here's how you would construct the ##J = 3, m = 0## state.
First, we must have ##L = 2## and ##S = 1##. Looking at the Clebsch-Gordan table we see that the ##3, 0## state as a composition of ##L = 2## and ##S = 1## is:
$$|3, 0 \rangle = \sqrt{\frac 1 5}|2, 1 \rangle \otimes |1, -1 \rangle + \sqrt{\frac 3 5}|2, 0 \rangle \otimes |1, 0 \rangle + \sqrt{\frac 1 5}|2, -1 \rangle \otimes |1, 1 \rangle$$
That gives us three combinations of ##L + S## states to look at. We need to confirm that each of these is symmetric in the two particles. Again, from the table we have:
$$|2, 1 \rangle = \sqrt{\frac 1 2}|1, 1 \rangle \otimes |1, 0 \rangle + \sqrt{\frac 1 2}|1, 0 \rangle \otimes |1, 1 \rangle$$ $$|2, 0 \rangle = \sqrt{\frac 1 6}|1, 1 \rangle \otimes |1, -1 \rangle + \sqrt{\frac 2 3}|1, 0 \rangle \otimes |1, 0 \rangle + \sqrt{\frac 1 6}|1, -1 \rangle \otimes |1, 1 \rangle$$ $$|2, -1 \rangle = \sqrt{\frac 1 2}|1, 0 \rangle \otimes |1, -1 \rangle + \sqrt{\frac 1 2}|1, -1 \rangle \otimes |1, 0 \rangle$$
Note that these are all symmetric states.
Finally, we look at the three ##S = 1## states, composed of two ##S = 1/2## particles. You should already know that these are symmetric, but in any case they are:
$$|1, -1 \rangle = |1/2, -1/2 \rangle \otimes |1/2, -1/2 \rangle$$ $$|1, 0 \rangle = \sqrt{\frac 1 2}|1/2, 1/2 \rangle \otimes |1/2, -1/2 \rangle + \sqrt{\frac 1 2}|1/2, -1/2 \rangle \otimes |1/2, 1/2 \rangle$$ $$|1, 1 \rangle = |1/2, 1/2 \rangle \otimes |1/2, 1/2 \rangle$$
The ##3, 0## state is, therefore, symmetric in the two particles, as all possible states are symmetric. For ##J = 3## to be allowed, at least one of the possible states be anti-symmetric.
You have a similar situation for the other ##J = 3, m = 1, 2, 3## states. These are all symmetric as well. Hence no ##J = 3## states are allowed.