Sping Matrices and Commutation Relations

Rahmuss
Messages
222
Reaction score
0

Homework Statement


Check that the spin matrices (Equations 4.145 and 4.147) obey the fundamental commutation relations for angular momentum, Equation 4.134.

Homework Equations


Eq. 4.147a --> S_{x} = \frac{\hbar}{2}\begin{pmatrix}0 & 1 \\ 1 & 0 \end{pmatrix}

Eq. 4.147b --> S_{y} = \frac{\hbar}{2}\begin{pmatrix}0 & -i \\ i & 0 \end{pmatrix}

Eq. 4.145 --> S_{z} = \frac{\hbar}{2}\begin{pmatrix}1 & 0 \\ 0 & -1 \end{pmatrix}

\left[ S_{x}, S_{y}\right] = i\hbar S_{z}

\left[ S_{y}, S_{z}\right] = i\hbar S_{x}

\left[ S_{z}, S_{x}\right] = i\hbar S_{y}

The Attempt at a Solution



Well, from Eq. 4.147 I have S_{x} = \frac{\hbar}{2}\begin{pmatrix}0 & 1 \\ 1 & 0 \end{pmatrix} and also S_{y} = \frac{\hbar}{2}\begin{pmatrix}0 & -i \\ i & 0 \end{pmatrix}

So \left[ S_{x}, S_{y} \right] = i\hbar S_{z} \Rightarrow

\left[ \frac{\hbar}{2}\begin{pmatrix}0 & 1 \\ 1 & 0 \end{pmatrix}, \frac{\hbar}{2}\begin{pmatrix}0 & -i \\ i & 0 \end{pmatrix} \right] \Rightarrow

\frac{\hbar^{2}}{4}\begin{pmatrix}0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix}0 & -i \\ i & 0 \end{pmatrix} - \frac{\hbar^{2}}{4}\begin{pmatrix}0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix}0 & 1 \\ 1 & 0 \end{pmatrix} \Rightarrow

\frac{\hbar^{2}}{4}\begin{pmatrix}i & 0 \\ 0 & -i \end{pmatrix} - \frac{\hbar^{2}}{4}\begin{pmatrix}-i & 0 \\ 0 & i \end{pmatrix} = \frac{\hbar^{2}}{4}\begin{pmatrix}2i & 0 \\ 0 & -2i \end{pmatrix}

It doesn't quite seem right to me because the answer shows:

\left[ S_{x}, S_{y}\right] = i\hbar S_{z}

But I can't see how I'd get that from where I'm going.
 
Last edited:
Physics news on Phys.org
Your answer IS i*hbar*S_z.
 
Err... hey, you're right. :D

This idiot thanks you.
 
Last edited:
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top