Sping Matrices and Commutation Relations

Rahmuss
Messages
222
Reaction score
0

Homework Statement


Check that the spin matrices (Equations 4.145 and 4.147) obey the fundamental commutation relations for angular momentum, Equation 4.134.

Homework Equations


Eq. 4.147a --> S_{x} = \frac{\hbar}{2}\begin{pmatrix}0 & 1 \\ 1 & 0 \end{pmatrix}

Eq. 4.147b --> S_{y} = \frac{\hbar}{2}\begin{pmatrix}0 & -i \\ i & 0 \end{pmatrix}

Eq. 4.145 --> S_{z} = \frac{\hbar}{2}\begin{pmatrix}1 & 0 \\ 0 & -1 \end{pmatrix}

\left[ S_{x}, S_{y}\right] = i\hbar S_{z}

\left[ S_{y}, S_{z}\right] = i\hbar S_{x}

\left[ S_{z}, S_{x}\right] = i\hbar S_{y}

The Attempt at a Solution



Well, from Eq. 4.147 I have S_{x} = \frac{\hbar}{2}\begin{pmatrix}0 & 1 \\ 1 & 0 \end{pmatrix} and also S_{y} = \frac{\hbar}{2}\begin{pmatrix}0 & -i \\ i & 0 \end{pmatrix}

So \left[ S_{x}, S_{y} \right] = i\hbar S_{z} \Rightarrow

\left[ \frac{\hbar}{2}\begin{pmatrix}0 & 1 \\ 1 & 0 \end{pmatrix}, \frac{\hbar}{2}\begin{pmatrix}0 & -i \\ i & 0 \end{pmatrix} \right] \Rightarrow

\frac{\hbar^{2}}{4}\begin{pmatrix}0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix}0 & -i \\ i & 0 \end{pmatrix} - \frac{\hbar^{2}}{4}\begin{pmatrix}0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix}0 & 1 \\ 1 & 0 \end{pmatrix} \Rightarrow

\frac{\hbar^{2}}{4}\begin{pmatrix}i & 0 \\ 0 & -i \end{pmatrix} - \frac{\hbar^{2}}{4}\begin{pmatrix}-i & 0 \\ 0 & i \end{pmatrix} = \frac{\hbar^{2}}{4}\begin{pmatrix}2i & 0 \\ 0 & -2i \end{pmatrix}

It doesn't quite seem right to me because the answer shows:

\left[ S_{x}, S_{y}\right] = i\hbar S_{z}

But I can't see how I'd get that from where I'm going.
 
Last edited:
Physics news on Phys.org
Your answer IS i*hbar*S_z.
 
Err... hey, you're right. :D

This idiot thanks you.
 
Last edited:
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top