How Do Dirac Spinors Relate to the Ricci Scalar in Curved Spacetime?

Gauge86
Messages
3
Reaction score
0
I have to compute the square of the Dirac operator, D=γaeμaDμ , in curved space time (DμΨ=∂μΨ+AabμΣab is the covariant derivative of the spinor field and Σab the Lorentz generators involving gamma matrices). Dirac equation for the massless fermion is γaeμaDμΨ=0. In particular I have to show that Dirac spinors obey the following equation:
(−DμDμ+14R)Ψ=0 (1)
where R is (I guess) the Ricci scalar. Appling to the Dirac eq, the operator γνDν and decomposing the product γμγν in symmetric and antisymmetric part I found:
DμDμΨ+14[γμν][Dμ,Dν]Ψ=0
Now I have troubles to show that this last object is related with the Ricci scalar. Can somebody help me or suggest me the right way to solve Eq. (1)?
 
Physics news on Phys.org
In the last Equation is 1/4 and not 14.
 
The commutator of <curved> covariant derivatives is proportional to a term involving the curvature tensor (in terms of vierbeins) and to another term involving the torsion tensor (again written in terms of vierbeins). This is a standard result which you should check by yourself or look it up in a book. You should really compute this term:

[\gamma^{\mu},\gamma^{\nu}][D_{\mu},D_{\nu}] \Psi
 
Thanks. The problem is that I'm not able to compute that term. I guess something like:

μρ] Rμρ ψ

Moreover I do not know if this is the right way to solve Equation (1).
 
Try Nakahara's book for a useful reference on the vierbein - spin connection formalism. We can't perform the calculations for you.
 
@gauge86:you might be aware of that covariant derivatives don't commute.In GR you might have seen that this difference amounts to curvature tensor.So that commutator must likely to be ricci curvature tensor or something equivalent.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top