This is technical. Since I have no idea what your level is, I'll give you the full answer. But if you don't understand any of this, then the short answer is, "this is a technical thing that theoretical physicists consider when constructing mathematical models of supersymmetry."
An R symmetry in SUSY is a symmetry that treats the supersymmetric partners differently. The most famous example is "R-parity" where the supersymmetric particles are "odd" and the ordinary particles are "even".
When you have a SUSY theory, you often (perhaps ALWAYS - I can't think of a counterexample) have an "R symmetry" as well. For so called "N=1 SUSY" the R symmetry is U(1). For "N=2 SUSY" the R symmetry is SU(2), etc. The statement you are making is that if you spontaneously break the R symmetry, you also tend to break SUSY as well. This is very important if you are trying to build a model of SUSY, for example, and you are trying to figure out how SUSY is broken - if you can find a way to break the R symmetry, then you also break SUSY while you're at it!
The minimal supersymmetric standard model (MSSM) is an example of N=1 SUSY whose U(1) R symmetry was broken down to a Z_2 parity. I have written papers that consider N=2 SUSY that does NOT break the R symmetry (we called it Minimal-R-symmetric-Supersymmetric-Standard-Model, or MRSSM).
The above statement you made is also not true in general - you need something called "generic conditions". But that's another technical point...
Hope that helps!