Spot the error (circumference of ellipse)

  • Thread starter Thread starter nonequilibrium
  • Start date Start date
  • Tags Tags
    Ellipse Error
nonequilibrium
Messages
1,412
Reaction score
2
Spot the error:

The circumference of an ellipse with semi-major axis = 2 and semi-minor axis = 1 (i.e. \left( \frac{x}{2} \right)^2 + y^2 = 1) is 4 \pi. Proof:

\textrm{circumference} = \iint_{\mathbb R^2}{ \delta \left( \left( \frac{x}{2} \right)^2 + y^2 - 1 \right) } \mathrm d x \mathrm d y = 2 \iint_{\mathbb R^2}{ \delta \left( \left( \frac{x}{2} \right)^2 + y^2 - 1 \right) } \mathrm d \frac{x}{2} \mathrm d y = 2 \iint_{\mathbb R^2}{ \delta \left( x^2 + y^2 - 1 \right) } \mathrm d x \mathrm d y = 2 \times 2 \pi = 4 \pi

(I couldn't post this in the Math forum since they would just yell at me for using the dirac delta, and it's also not homework as I know the answer.)
 
Mathematics news on Phys.org
I could not see the mistake yet.. Interesting way to calculate the circumference :)
 
mr. vodka said:
(I couldn't post this in the Math forum since they would just yell at me for using the dirac delta

Well, I just moved it to the math forum. So prepare for some yelling :biggrin:
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top