Stability against small perturbation.

wphysics
Messages
27
Reaction score
0
Hello,

I am reading the book, The Quantum Theory of Fields II by Weinberg.
In page 426 of this book (about soliton, domain wall stuffs), we have Eq(23.1.5) as the solution that minimizes Eq(23.1.3).

The paragraph below Eq(23.1.5), the author said "The advantage of the derivation based on the formula (23.1.3) is that it shows immediately that the solution (23.1.5) is stable against small perturbations that maintain the flatness of the boundary. ... By adding a term \frac{1}{2} (\frac{\textrm{d}\phi}{\textrm{d}y})^2 +\frac{1}{2} (\frac{\textrm{d}\phi}{\textrm{d}z})^2 in the integrand of Eq (23.1.2), we can see that this solution is also stable against any perturbation ..."

Here, I don't understand why they have to be stable against small perturbation in both cases. I guess I don't have any good idea about the stability of differential equation or action. Could you guys explain how we can show they are stable explicitly?

Thank you for your help.
 
Physics news on Phys.org
I don't have Weinberg. Put up the equations.
 
I am now at home, so I don't have Weinberg right now.
I will post the relevant equations as soon as I am back to the school.

Thank you for your interest.


QUOTE=rigetFrog;4772632]I don't have Weinberg. Put up the equations.[/QUOTE]
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top